Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces
Abstract
:1. Introduction
2. Device Fabrication
3. Results and Discussion
3.1. Investigation of Composition-Dependent Hafnium Zirconium Oxide Capacitors with Solid Solution and Superlattice Structure
3.2. Comparison and Enhancement of Silicon Nanosheet Gate-All-Around Field-Effect Transistors with Solid Solution and Superlattice Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, K.J.; Murthy, A.; Kotlyar, R.; Kuhn, M. (Invited) Past, Present and Future: SiGe and CMOS Transistor Scaling. ECS Trans. 2010, 33, 3. [Google Scholar] [CrossRef]
- Ando, T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials 2012, 5, 478–500. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Lin, Z.; Chen, Z.; Sun, X.; Wang, H.; Ye, P.D. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron. 2022, 5, 164–170. [Google Scholar] [CrossRef]
- Ni, K.; Saha, A.; Chakraborty, W.; Ye, H.; Grisafe, B.; Smith, J.; Rayner, G.B.; Gupta, S.; Datta, S. In Equivalent Oxide Thickness (EOT) Scaling With Hafnium Zirconium Oxide High-κ Dielectric Near Morphotropic Phase Boundary. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 7.4.1–7.4.4. [Google Scholar] [CrossRef]
- Chakraborty, W.; Jose, M.S.; Gomez, J.; Saha, A.; Aabrar, K.A.; Fay, P.; Gupta, S.; Datta, S. In Higher-k Zirconium Doped Hafnium Oxide (HZO) Trigate Transistors with Higher DC and RF Performance and Improved Reliability. In Proceedings of the 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar]
- Wong, H.; Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 2015, 138, 57–76. [Google Scholar] [CrossRef]
- Weng, Z.; Zhao, L.; Lee, C.; Zhao, Y. Phase Transitions and Anti-Ferroelectric Behaviors in Hf1-xZrxO2 Films. IEEE Electron. Device Lett. 2023, 44, 1780–1783. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Hwang, C.S. Fluorite-structure antiferroelectrics. Rep. Prog. Phys. 2019, 82, 124502. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; et al. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics. Appl. Phys. Lett. 2018, 112. [Google Scholar] [CrossRef]
- Ferrari, S.; Scarel, G. Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100). J. Appl. Phys. 2004, 96, 144–149. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, J.; Peng, Y.; Liu, Y.; Yu, X.; Han, G. Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film. Appl. Phys. Lett. 2022, 121, 242901. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Lee, G.; Park, J.; Lee, Y.H.; Kim, Y.J.; Moon, T.; Kim, K.D.; Hyun, S.D.; Park, H.W.; et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 2019, 6, 041403. [Google Scholar] [CrossRef]
- Liang, Y.K.; Li, W.L.; Wang, Y.J.; Peng, L.C.; Lu, C.C.; Huang, H.Y.; Yeong, S.H.; Lin, Y.M.; Chu, Y.H.; Chang, E.Y.; et al. ZrO2-HfO2 Superlattice Ferroelectric Capacitors with Optimized Annealing to Achieve Extremely High Polarization Stability. IEEE Electron. Device Lett. 2022, 43, 1451–1454. [Google Scholar] [CrossRef]
- Cheema, S.S.; Shanker, N.; Wang, L.-C.; Hsu, C.-H.; Hsu, S.-L.; Liao, Y.-H.; San Jose, M.; Gomez, J.; Chakraborty, W.; Li, W.; et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 2022, 604, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Jang, H.; Hwang, H. Accurate Evaluation of High-k HZO/ZrO2 Films by Morphotropic Phase Boundary. IEEE Electron. Device Lett. 2024, 45, 28–31. [Google Scholar] [CrossRef]
- Saha, A.K.; Grisafe, B.; Datta, S.; Gupta, S.K. In Microscopic Crystal Phase Inspired Modeling of Zr Concentration Effects in Hf1-xZrxO2 Thin Films. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T226–T227. [Google Scholar] [CrossRef]
- Das, D.; Buyantogtokh, B.; Gaddam, V.; Jeon, S. Sub 5 Å-EOT HfₓZr1–xO₂ for Next-Generation DRAM Capacitors Using Morphotropic Phase Boundary and High-Pressure (200 atm) Annealing with Rapid Cooling Process. IEEE Trans. Electron. Devices 2022, 69, 103–108. [Google Scholar] [CrossRef]
- Lehninger, D.; Prabhu, A.; Sünbül, A.; Ali, T.; Schöne, F.; Kämpfe, T.; Biedermann, K.; Roy, L.; Seidel, K.; Lederer, M.; et al. Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability. Adv. Phys. Res. 2023, 2, 2200108. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Dewey, G.; Mannebach, E.; Phan, A.; Morrow, P.; Rachmady, W.; Tung, I.-C.; Thomas, N.; Alaan, U.; Paul, R.; et al. 3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 20.6.1–20.6.4. [Google Scholar] [CrossRef]
- Jagannathan, H.; Anderson, B.; Sohn, C.-W.; Tsutsui, G.; Strane, J.; Xie, R.; Fan, S.; Kim, K.-I.; Song, S.; Sieg, S.; et al. Vertical-Transport Nanosheet Technology for CMOS Scaling beyond Lateral-Transport Devices. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–15 December 2021; pp. 26.1.1–26.1.4. [Google Scholar] [CrossRef]
- Mertens, H.; Ritzenthaler, R.; Chasin, A.; Schram, T.; Kunnen, E.; Hikavyy, A.; Ragnarsson, L.-Å.; Dekkers, H.; Hopf, T.; Wostyn, K.; et al. Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 19.7.1–19.7.4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.-J.; Fu, Y.-M.; Chen, Y.-H.; Wei, C.-Y.; Huang, K.-T.; Luo, G.-L.; Hou, F.-J.; Lai, Y.-S.; Wu, Y.-C. Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces. Materials 2025, 18, 1740. https://doi.org/10.3390/ma18081740
Yao Y-J, Fu Y-M, Chen Y-H, Wei C-Y, Huang K-T, Luo G-L, Hou F-J, Lai Y-S, Wu Y-C. Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces. Materials. 2025; 18(8):1740. https://doi.org/10.3390/ma18081740
Chicago/Turabian StyleYao, Yi-Ju, Yu-Min Fu, Yu-Hung Chen, Chen-You Wei, Kai-Ting Huang, Guang-Li Luo, Fu-Ju Hou, Yu-Sheng Lai, and Yung-Chun Wu. 2025. "Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces" Materials 18, no. 8: 1740. https://doi.org/10.3390/ma18081740
APA StyleYao, Y.-J., Fu, Y.-M., Chen, Y.-H., Wei, C.-Y., Huang, K.-T., Luo, G.-L., Hou, F.-J., Lai, Y.-S., & Wu, Y.-C. (2025). Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces. Materials, 18(8), 1740. https://doi.org/10.3390/ma18081740