Effectiveness of Antimicrobial Agents Incorporated into Soft Denture Liners: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
- Among the agents studied, nystatin was the most frequently employed, exhibiting robust fungicidal properties in both in vivo and in vitro investigations.
- The antimicrobial agents effectively inhibited the adhesion and colonization of Candida albicans, thereby serving as a preventive measure against denture-induced stomatitis.
- The enhancement of antifungal effects was generally aligned with increasing concentrations of antimicrobial agents. However, several compounds, including carvacrol, Melaleuca alternifolia, chlorhexidine diacetate, and itraconazole, were observed to retain efficacy at comparatively lower concentrations.
- A range of other agents, such as miconazole, ketoconazole, Ag-zeolite, fluconazole, Carum anthelminticum, ocimum sanctum seed oils, quaternized chitosan, neem, terpinen-4-ol, and cinnamaldehyde, demonstrated complete inhibition of C. albicans growth across various concentrations.
- The introduction of these antimicrobial agents had a minimal impact on the mechanical properties of the soft liners, with alterations being proportional to the concentrations used.
- While the addition of antimicrobial substances to soft liners appears to influence the mechanical characteristics of the denture bases, the prevailing evidence remains inconclusive.
- Further research is warranted to elucidate the long-term implications of these modifications on the performance and durability of denture materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chladek, G.; Mertas, A.; Barszczewska-Rybarek, I.; Nalewajek, T.; Żmudzki, J.; Król, W.; Łukaszczyk, J. Antifungal activity of denture soft lining material modified by silver nanoparticles—A pilot study. Int. J. Mol. Sci. 2011, 12, 4735–4744. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Stencel, E.; Pakieła, W.; Mertas, A.; Bobela, E.; Kasperski, J.; Chladek, G. Effect of Silver-emitting filler on antimicrobial and mechanical properties of soft denture lining material. Materials 2018, 11, 318. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Hamada, T.; Sadamori, S. Relationship between viscoelastic properties of soft denture liners and clinical efficacy. Jpn. Dent. Sci. Rev. 2008, 44, 128–132. [Google Scholar] [CrossRef]
- Khanna, A.; Bhatnagar, V.M.; Karani, J.T.; Madria, K.; Mistry, S. A comparative evaluation of shear bond strength between self-cured resilient liner and denture base resin with different surfacetreatments. JCDR 2015, 9, ZC30–ZC34. [Google Scholar] [PubMed]
- An, S.; Evans, J.L.; Hamlet, S.; Love, R.M. Incorporation of antimicrobial agents in denture base resin: A systematic review. J. Prosthet. Dent. 2021, 126, 188–195. [Google Scholar] [CrossRef]
- Pachava, K.R.; Nadendla, L.K.; Alluri, L.S.C.; Tahseen, H.; Sajja, N.P. In vitro antifungal evaluation of denture soft liner incorporated with tea tree oil: A new therapeutic approach towards denture stomatitis. JCDR 2015, 9, ZC62. [Google Scholar]
- Saravanan, M.; Kumar, V.; Padmanabhan, T.; Banu, F. Viscoelastic Properties and antimicrobial effects of soft liners with silver zeolite in complete dental prosthesis wearers: An in vivo study. Int. J. Prosthodont. 2015, 28, 265–269. [Google Scholar] [CrossRef]
- Muttagi, S.; Subramanya, J.K. Effect of incorporating seed oils on the antifungal property, surface roughness, wettability, weight change, and glucose sorption of a soft liner. J. Prosthet. Dent. 2017, 117, 178–185. [Google Scholar] [CrossRef]
- Altinci, P.; Mutluay, M.; Söderling, E.; Tezvergil-Mutluay, A. Antimicrobial efficacy and mechanical properties of BAC-modified hard and soft denture liners. Odontology 2018, 106, 83–89. [Google Scholar] [CrossRef]
- Lima, J.F.M.; Maciel, J.G.; Hotta, J.; Vizoto, A.C.P.; Honório, H.M.; Urban, V.M.; Neppelenbroek, K.H. Porosity of temporary denture soft liners containing antifungal agents. J. Appl. Oral Sci. 2016, 24, 453–461. [Google Scholar] [CrossRef]
- Radnai, M.; Whiley, R.; Friel, T.; Wright, P.S. Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology 2010, 27, 292–296. [Google Scholar] [CrossRef]
- Deng, J.; Ren, L.; Pan, Y.; Gao, H.; Meng, X. Antifungal property of acrylic denture soft liner containing silver nanoparticles synthesized in situ. J. Dent. 2021, 106, 103589. [Google Scholar] [CrossRef] [PubMed]
- Atar-Froyman, L.; Sharon, A.; Weiss, E.I.; Houri-Haddad, Y.; Kesler-Shvero, D.; Domb, A.J.; Pilo, R.; Beyth, N. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 2015, 46, 141–148. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Hallikerimath, R.B. An in-vitro evaluation of retention, colonization and penetration of commonly used denture lining materials by candida albicans. JCDR 2016, 10, ZC84. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.S.; Young, K.A.; Riggs, P.D.; Parker, S.; Kalachandra, S. Evaluating the effect of soft lining materials on the growth of yeast. J. Prosthet. Dent. 1998, 79, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Mahboub, F.; Salehsaber, F.; Parnia, F.; Gharekhani, V.; Kananizadeh, Y.; Taghizadeh, M. Effect of denture cleansing agents on tensile and shear bond strengths of soft liners to acrylic denture base. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 183–188. [Google Scholar] [CrossRef]
- Mohammed, H.S.; Singh, S.; Hari, P.A.; Amarnath, G.; Kundapur, V.; Pasha, N.; Anand, M. Evaluate the effect of commercially available denture cleansers on surface hardness and roughness of denture liners at various time intervals. Int. J. Biol. Sci. 2016, 12, 130. [Google Scholar] [CrossRef]
- Brożek, R.; Koczorowski, R.; Rogalewicz, R.; Voelkel, A.; Czarnecka, B.; Nicholson, J.W. Effect of denture cleansers on chemical and mechanical behavior of selected soft lining materials. Dent. Mater. 2011, 27, 281–290. [Google Scholar] [CrossRef]
- Garcia, R.C.R.; Léon, B.L.; Oliveira, V.M.; Cury, A.A.D.B. Effect of a denture cleanser on weight, surface roughness, and tensile bond strength of two resilient denture liners. J. Prosthet. Dent. 2003, 89, 489–494. [Google Scholar] [CrossRef]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef]
- Yang, Z.; Han, L.; Guo, Y.; Jia, L.; Yin, C.; Xia, Y. Nanotechnology in dental therapy and oral tissue regeneration. In Reviews in Nanotechnology in Regenerative Medicine and Drug Delivery Therapy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 91–189. [Google Scholar]
- Zender, C.A.; Mehta, V.; Pittman, A.L.; Feustel, P.J.; Jaber, J.J. Etiologic causes of late osteocutaneous free flap failures in oral cavity cancer reconstruction. Laryngoscope 2012, 122, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Shim, Y.-S.; An, S.-Y.; Kang, M.K. Surface characterization, biocompatibility and antifungal efficacy of a denture-lining material containing cnidium officinale extracts. Molecules 2021, 26, 1440. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Higgins, J.P. RoB 2: A revised tool for assessing risk of bias in ran-domised trials. BMJ 2019, 366, 4898. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.Q.; Al-Hmedat, S.J.A.-Z.; Hanweet, D.M.; Haider, J. Assessing the Antifungal activity of a soft denture liner loaded with titanium oxide nanoparticles (TiO2 NPs). Dent. J. 2023, 11, 90. [Google Scholar] [CrossRef]
- Albrecht, N.; Fidalgo, T.K.D.S.; DE Alencar, M.J.S.; Maia, L.C.; Urban, V.M.; Neppelenbroek, K.H.; Reis, K.R. Peel bond strength and antifungal activity of two soft denture lining materials incorporated with 1% chlorhexidine diacetate. Dent. Mater. J. 2018, 37, 725–733. [Google Scholar] [CrossRef]
- Ansarifard, E.; Zareshahrabadi, Z.; Sarafraz, N.; Zomorodian, K. Evaluation of antimicrobial and antibiofilm activities of copper oxide nanoparticles within soft denture liners against oral pathogens. Bioinorg. Chem. Appl. 2021, 2021, 9939275. [Google Scholar] [CrossRef]
- Baygar, T.; Ugur, A.; Sarac, N.; Balci, U.; Ergun, G. Functional denture soft liner with antimicrobial and antibiofilm properties. J. Dent. Sci. 2018, 13, 213–219. [Google Scholar] [CrossRef]
- Bertolini, M.M.; Portela, M.B.; Curvelo, J.A.R.; Soares, R.M.; Lourenço, E.J.; Telles, D.M. Resins-based denture soft lining materials modified by chlorhexidine salt incorporation: An in vitro analysis of antifungal activity, drug release and hardness. Dent. Mater. 2014, 30, 793–798. [Google Scholar] [CrossRef]
- Bueno, M.; Urban, V.; Barbério, G.; da Silva, W.; Porto, V.; Pinto, L.; Neppelenbroek, K. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis. 2015, 21, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Catalán, A.; Pacheco, J.G.; Martínez, A.; Mondaca, M.A. In vitro and in vivo activity of melaleuca alternifolia mixed with tissue conditioner on Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 327–332. [Google Scholar] [CrossRef]
- Chow, C.K.W.; Matear, D.W.; Lawrence, H.P. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology 1999, 16, 110–118. [Google Scholar] [CrossRef] [PubMed]
- de Fátima Souto Maior, L.; Maciel, P.P.; Ferreira, V.Y.N.; de Lima Gouveia Dantas, C.; de Lima, J.M.; Castellano, L.R.C.; Bonan, P.R.F. Antifungal activity and Shore A hardness of a tissue conditioner incorporated with terpinen-4-ol and cinnamaldehyde. Clin. Oral Investig. 2019, 23, 2837–2848. [Google Scholar] [CrossRef]
- Falah-Tafti, A.; Jafari, A.A.; Lotfi-Kamran, M.H.; Fallahzadeh, H.; Hayan, R.S. A Comparison of the eFficacy of nystatin and fluconazole incorporated into tissue conditioner on the in vitro attachment and colonization of candida albicans. Dent. Res. J. 2010, 7, 18–22. [Google Scholar]
- Ferreira, A.N.; D’Souza, K.; Aras, M.; Chitre, V.; Parsekar, S.; Pinto, M.J.W. Long term antifungal efficacy of silver-zinc zeolite nanoparticles incorporated in two soft denture liners—An in vitro assessment. Dent. Res. J. 2022, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Geerts, G.A.V.M.; Stuhlinger, M.E.; Basson, N.J. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: A pilot study. J. Oral Rehabil. 2008, 35, 664–669. [Google Scholar] [CrossRef]
- Gonçalves, L.; Cury, A.D.B.; Sartoratto, A.; Rehder, V.G.; Silva, W. Effects of undecylenic acid released from denture liner on Candida biofilms. J. Dent. Res. 2012, 91, 985–989. [Google Scholar] [CrossRef]
- Habibzadeh, S.; Eskandarion, S.; Marashi, S.M.A.; Yunesi, G.; Kharazifard, M. Antifungal efficacy of a permanent silicon soft liner containing silver nanoparticles. Front. Dent. 2021, 18, 8. [Google Scholar] [CrossRef]
- Kim, H.-J.; Son, J.S.; Kwon, T.-Y. Antifungal effect of a dental tissue conditioner containing nystatin-loaded alginate microparticles. J. Nanosci. Nanotechnol. 2018, 18, 848–852. [Google Scholar] [CrossRef]
- Kreve, S.; Oliveira, V.C.; Bachmann, L.; Alves, O.L.; Dos Reis, A.C. Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci. Rep. 2019, 9, 11889. [Google Scholar] [CrossRef]
- Kumar, S.M.; Kumar, V.A.; Natarajan, P.; Sreenivasan, G. Antifungal efficacy and the mechanical properties of soft liners against Candida albicans after the incorporation of garlic and neem: An In vitro study. J. Int. Soc. Prev. Community Dent. 2018, 8, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-L.; Wang, R.-S.; Hsu, Y.-C.; Chuang, C.-C.; Chan, H.-R.; Chiu, H.-C.; Fu, E. Antifungal effect of tissue conditioners containing poly (acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J. Dent. Sci. 2018, 13, 160–166. [Google Scholar] [CrossRef]
- Matsuura, T.; Abe, Y.; Sato, Y.; Okamoto, K.; Ueshige, M.; Akagawa, Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J. Dent. 1997, 25, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.-Y. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J. Adv. Prosthodont. 2011, 3, 20–24. [Google Scholar] [CrossRef]
- Nikawa, H.; Yamamoto, T.; Hamada, T.; Rahardjo, M.; Murata, H.; Nakanoda, S. Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production. J. Oral. Rehabil. 1997, 24, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Procópio, A.L.F.; Lara, V.S.; Porto, V.C.; Soares, S.; Fernandes, M.H.; Urban, V.M.; Neppelenbroek, K.H. Resilient liner modified by antimicrobials for denture stomatitis treatment: A randomized controlled trial. J. Dent. 2022, 126, 104297. [Google Scholar] [CrossRef]
- Quinn, D. The effectiveness, in vitro, of miconazole and keteconazole combined with tissue conditioners in inhibiting the growth of Candida albicans. J. Oral. Rehabil. 1985, 12, 177–182. [Google Scholar] [CrossRef]
- Songsang, N.; Anunmana, C.; Pudla, M.; Eiampongpaiboon, T. Effects of Litsea cubeba essential oil incorporated into denture soft lining materials. Polymers 2022, 14, 3261. [Google Scholar] [CrossRef]
- Srivatstava, A.; Ginjupalli, K.; Perampalli, N.U.; Bhat, N.; Ballal, M. Evaluation of the properties of a tissue conditioner containing origanum oil as an antifungal additive. J. Prosthet. Dent. 2013, 110, 313–319. [Google Scholar] [CrossRef]
- Thomas, C.; Nutt, G.M. The in vitro fungicidal properties of Visco-gel, alone and combined with nystatin and amphotericin B. J. Oral Rehabil. 1978, 5, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Vankadara, S.K.; Hallikerimath, R.B.; Patil, V.; Bhat, K.; Doddamani, M.H. Effect of Melaleuca alternifolia mixed with tissue conditioners in varying doses on colonization and inhibition of Candida albicans: An in vitro study. Contemp. Clin. Dent. 2017, 8, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral candidiasis: An overview. J. Oral. Maxillofac. Pathol. 2014, 18, S81–S85. [Google Scholar]
- Yarborough, A.; Cooper, L.; Duqum, I.; Mendonça, G.; McGraw, K.; Stoner, L. Evidence regarding the treatment of denture sto-matitis. Prosthodont 2016, 25, 288–301. [Google Scholar] [CrossRef]
- Bajunaid, S.O. How effective are antimicrobial agents on preventing the adhesion of Candida albicans to denture base acrylic resin materials? A systematic review. Polymers 2022, 14, 908. [Google Scholar] [CrossRef] [PubMed]
Study | Type SDLM | No. of Samples | Antimicrobial Agent | Concentration | Conclusions |
---|---|---|---|---|---|
Thomas et al., 1978 [52] | TC | 6 | Nystatin Amphotericin B | 0, 500,000 U, 1,000,000 U 0, 10 mg, 20 mg | Nystatin completely inhibited C. albicans at 1,000,000 U Amphotericin very little inhibition |
Quinn et al., 1985 [49] | TC | 24 | Miconazole Ketoconazole Amphotericin B Nystatin | 250 mg 200 mg 10 mg, 20 mg 500,000 U | Amphotericin B ineffective Miconazole & ketoconazole & nystatin completely inhibited C. albicans |
Nikawa et al., 1997 [47] | TC | 96 | Ag-zeolite | 1, 2, 3, 4, 5% | Ag-zeolite completely inhibited C. albicans at 5% |
Matsuura et al., 1997 [45] | TC | 11 | SZ | 0%, 2% | SZ at 2% antimicrobial effect |
Chow et al., 1999 [34] | TC | 114 | Nystatin, Fluconazole, Itraconazole | 1%, 3%, 5%, 7%, 9%, 11% | Itraconazole 5% wt/wt most fungicidal activity |
Catalán et al., 2008 [33] | TC | - | Melaleuca arternifolia Nystatin | 0, 0.5, 1.0, 1.5, 2.0 mL 1.0 mL | Μ. arternifolia inhibited C. albicans at 1.0 mL Nystatin completely inhibited C. albicans |
Nam 2011 [46] | TC | 162 | Silver NPs | 0, 0.1, 0.5, 1.0, 2.0, 3.0% | Silver NPs antimicrobial properties at 2, 3% |
Falah-Tafti et al., 2010 [36] | TC | 24 | Nystatin Fluconazole | 1–10% 10% | Nystatin at 1% to 10% & Fluconazole 10% completely inhibited C. albicans |
Chladek et al., 2011 [1] | SB | 8 | AgNPs | 0, 10, 20, 40, 80, 120, 200 ppm | Highest antifungal efficacy at 200 ppm |
Gonçalves et al., 2012 [39] | AB | 400 | Undecylenic Acid | 10% | UDA ineffective |
Srivatstava et al., 2013 [51] | TC | 90 | Origanum Oil | 0, 10, 20, 30, 40, 50, 55, 57, 60, 65% | Origanum oil reduced fungal adherence and colonization of C. albicans at 60, 65 vol% |
Bertolini et al., 2014 [31] | AB | 144 | CDA, CDH | 0, 0.5, 1.0, 2.0 wt% | CDA reduced the biofilm development of C. albicans at 2% CDH ineffective |
Bueno et al., 2015 [32] | TC& AB | 1488 | Nystatin, Ketoconazole Miconazole, Itraconazole Chlorhexidine diacetate | 0.016, 0.032, 0.064, 0.128 … plus 0.256 … plus 0.384 g/mL | Nystatin at 0.064 & CDA at 0.064 g/mL completely inhibited C. albicans Ketoconazole at 0.128 Miconazole& Itraconazole at 0.256 maximum antifungal effect |
Muttagi et al., 2017 [8] | TC | 200 | C. Anthelminticum, O. Sanctum Linum usitatissimum | 600, 700, 800 μL 800, 900, 1000 μL | C. Anthelmintic & O. Sanctum completely inhibited C. albicans at 800 μL Linum usitatissimum ineffective |
Vankadara et al., 2017 [53] | TC | 160 | Melaleuca alternifolia | 10, 20, 30, 40%/0.5, 1, 1.5, 2 mL | Μ. arternifolia antifungal efficacy at 40% |
Baygar et al., 2018 [30] | SB | - | Carvacrol | 0, 0.5, 1, 2.5, 5, 10, 20, 50 μL | Carvacrol decreased (98.03%) the biofilm formation at 10 μL |
Albrecht et al., 2018 [28] | AB | 6 | CDA | 0, 1% | CDA antifungal activity at 1% |
Altinci et al., 2018 [9] | SB & AB | 40 | BAC | 0.5, 1, 2 and 5 wt%. | BAC completely inhibited C. albicans at 0.5, 1, 2, 5 wt% |
Kim et al., 2018 [41] | TC | 5 | Nystatin-alginate MPs | 2 w/v nystatin mixed with 0.5% alginate | MPs demonstrated antifungal activity at 2 mg |
Kumar et al., 2018 [43] | AB | 30 | Garlic (Allium sativum) Neem (A. indica) | 50, 100, 200, 400, 500 μg | Neem completely &Garlic partially inhibited C. albicans. The most efficient concentration was not mentioned |
Lee et al., 2018 [44] | TC | 216 | CS QCS | 0, 5, 7.5, 10% | CS showed greater antifungal activity at 7.5% QCS completely inhibited C. albicans at 7.5 & 10% |
Maior et al., 2019 [35] | TC | 24 | Terpinen-4-ol Cinnamaldehyde | 0.125, 0.25, 0.5, 1, 5, 10, 20, 30, and 40% ...plus 0.0156% | Cinnamaldehyde completely inhibited C. albicans at 20, 30, 40% T-4-ol presented antifungal effect but even in concentration 40% were still viable C. albicans cells |
Kreve et al., 2019 [42] | AB | 100 | AgVO3 | 0, 1, 2.5, 5, 10% | AgVO3 was most efficient against C. albicans at 5% |
Ansarifard et al., 2021 [29] | AB | 80 | CuO NPs | 0, 0.5, 5, 50, 500 µg/mL | NPs significantly inhibited (75%) C. albicans at 500 μg/mL |
Deng et al., 2021 [12] | AB | 10 | AgNPs | 0, 0.1, 0.2, 0.3% | AgNPs significantly inhibited (63.38%) & (75.51%) C. albicans at 0.2 & 0.3% respectively |
Habibzadeh et al., 2021 [40] | SB | 20 | AgNPs | 0, 0.5, 1.0, 2.0, 3.0 wt% | greatest antifungal efficacy at 3 wt% AgNPs |
Lee et al., 2021 [23] | TC | - | CO | 0, 200, 400, 600 μg/mL | CO antimictobial efficacy at 600 μg/mL |
Songsang et al., 2022 [50] | TC | 25 | Litsea cubeba | 0, 5, 10, 20, 30% v/v | Litsea cubeba significantly inhibited C. albicans in 10, 20, 30% v/v |
Ferreira et al., 2022 [37] | TC | 72 | SZZ-NPs Fluconazole | 0, 0.5, 2% w/w 5% w/w | Fluconazole short-term inhibitory effect at 5% w/w and SZZ-NPs long-term inhibitory effect at 2% w/w |
Ahmed et al., 2023 [27] | AB | 40 | Titanium Oxide NPs | 0, 1.0, 1.5, 2.0 wt% | Antifungal effect: 1.0% -> 91.42% 1.5% -> 95.57% 2.0% -> 99.28% |
Study | Type SDLM | No. Samples | Antimicrobial Agent | Concentration | Conclusions |
---|---|---|---|---|---|
Catalán et al., 2008 [33] | TC | 27 | Melaleuca arternifolia Nystatin | - | Both antimicrobial agents significantly inhibited C. albicans |
Geerts et al., 2008 [38] | TC | 40 | Νystatin | 500,000 U | Nystatin completely inhibited C. albicans at 500,000 U |
Saravanan et al., 2015 [7] | AB | 30 | Silver—Zeolite | 0, 5% | Silver zeolite significant antimicrobial effect at 5% |
Procópio et al., 2022 [48] | AB | 40 | Nystatin Chlorexidine Diacetate | 0.032 g 0.064 g | Interim resilient liner modified by nystatin and chlorhexidine at MICs for C. albicans biofilm is a viable optional approach for DIS treatment |
Study | Pre Intervention | At Intervention | Post Intervention | Overall RoB | ||||
---|---|---|---|---|---|---|---|---|
Bias Due to Confounding | Bias in Selection of Participants | Bias in Classification of Interventions | Bias Due to Deviations from the Interventions | Bias Due to Missing Data | Bias in Measurements of Outcomes | Bias in Selection of Reported Results | Low/Moderate/Serious | |
Ahmed 2023 [27] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Albrecht 2018 [28] | Low | Low | Low | Low | ? | Low | Low | Low |
Altinci 2018 [9] | Low | Moderate | Moderate | Low | ? | Low | Low | Moderate |
Ansarifard 2021 [29] | Low | Low | Low | Low | ? | Low | Low | Low |
Baygar 2018 [30] | Low | Moderate | Low | Low | ? | Moderate | Low | Moderate |
Bertolini 2014 [31] | Low | Low | Low | Low | ? | Low | Low | Low |
Bueno 2015 [32] | Low | Low | Low | Low | ? | Low | Low | Low |
Catalán 2008 [33] | Low | Low | Low | Low | ? | Low | Low | Low |
Chladek 2011 [1] | Low | Moderate | Low | Moderate | ? | Low | Low | Moderate |
Chow 1999 [34] | Low | Low | Moderate | Low | ? | Low | Low | Moderate |
Deng 2021 [12] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Falah-Tafti 2010 [36] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Ferreira 2022 [37] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Geerts 2008 [38] | Low | Low | Low | Low | ? | Low | Low | Low |
Habibzadeh 2021 [40] | Low | Low | Low | Low | ? | Low | Low | Low |
Kim 2018 [41] | Low | Low | Low | Low | ? | Low | Low | Low |
Kreve 2019 [42] | Low | Moderate | Low | Moderate | ? | Low | Low | Moderate |
Kumar 2018 [43] | Low | Low | Moderate | Low | ? | Low | Low | Moderate |
Lee 2018 [44] | Low | Low | Low | Low | ? | Low | Low | Low |
Lee 2021 [23] | Low | Low | Low | Low | ? | Low | Low | Low |
de Fátima Souto Maior 2019 [35] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Matsuura 1997 [45] | Moderate | Low | Moderate | Low | ? | Low | Low | Moderate |
Muttagi 2017 [8] | Low | Moderate | Low | Low | ? | Low | Low | Moderate |
Nam 2011 [46] | Low | Low | Low | Low | ? | Low | Low | Low |
Nikawa 1997 [47] | Low | Moderate | Moderate | Low | ? | Low | Low | Moderate |
Quinn 1985 [49] | Low | Moderate | Low | Moderate | ? | Low | Moderate | Moderate |
Saravanan 2015 [7] | Moderate | Low | Low | Low | ? | Moderate | Low | Moderate |
Songsang 2022 [50] | Low | Low | Low | Low | ? | Low | Low | Low |
Srivatstava 2013 [51] | Low | Low | Low | Low | ? | Low | Low | Low |
Thomas 1978 [52] | Moderate | Moderate | Low | Low | ? | Low | Moderate | Moderate |
Vankadara 2017 [53] | Moderate | Low | Low | Low | ? | Moderate | Moderate | Moderate |
Authors | Bias from Randomization Process | Bias Due to Deviation from Intervention | Bias Due to Missing Outcome Data | Bias in Measurement of Outcome | Bias in Selection of Reported Results | Overall Bias |
---|---|---|---|---|---|---|
Gonçalves 2012 [39] | No | No | No | No | Yes | No |
Procópio 2022 [48] | No | No | Some concerns | Yes | No | Some concerns |
Antimicrobial Agent | Number of Studies | Effective Concentration | In Vitro/In Vivo | Impact on SDLM Properties |
---|---|---|---|---|
Nystatin | 8 | 500,000–1,000,000 U | Both | Minimal |
Chlorhexidine | 5 | 0.064–1% | Both | Possible peel strength reduction |
AgNPs | 6+ | 0.2–3%, 200 ppm | Mostly in vitro | ↑ Hardness, water sorption |
Silver-Zeolite | 2 | 5% | In vitro & in vivo | None |
Miconazole | 3 | 0.128–0.256 g/mL | Both | ↑ Hardness |
Ketoconazole | 2 | 200 mg | In vitro | None |
Fluconazole | 2 | 10% | In vitro | None |
Itraconazole | 2 | 0.032–0.256 g/mL | In vitro | ↑ Hardness |
BAC | 1 | 0.5–5 wt% | Both | None |
Neem | 2 | 200–500 μg | In vitro | None |
Garlic | 2 | 50–400 μg | In vitro | None |
Cinnamaldehyde | 2 | 20–40% | In vitro | ↑ Rigidity |
Carvacrol | 1 | 10 μL | In vitro | None |
Terpinen-4-ol | 1 | ≤40% | In vitro | ↑ Hardness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naka, O.; Tasopoulos, T.; Frixou, F.; Katmerou, E.; Shahin, H.; Tzanakakis, E.-G.; Zoidis, P. Effectiveness of Antimicrobial Agents Incorporated into Soft Denture Liners: A Systematic Review. Materials 2025, 18, 1764. https://doi.org/10.3390/ma18081764
Naka O, Tasopoulos T, Frixou F, Katmerou E, Shahin H, Tzanakakis E-G, Zoidis P. Effectiveness of Antimicrobial Agents Incorporated into Soft Denture Liners: A Systematic Review. Materials. 2025; 18(8):1764. https://doi.org/10.3390/ma18081764
Chicago/Turabian StyleNaka, Olga, Theodoros Tasopoulos, Frixos Frixou, Eirini Katmerou, Heidar Shahin, Emmanouil-George Tzanakakis, and Panagiotis Zoidis. 2025. "Effectiveness of Antimicrobial Agents Incorporated into Soft Denture Liners: A Systematic Review" Materials 18, no. 8: 1764. https://doi.org/10.3390/ma18081764
APA StyleNaka, O., Tasopoulos, T., Frixou, F., Katmerou, E., Shahin, H., Tzanakakis, E.-G., & Zoidis, P. (2025). Effectiveness of Antimicrobial Agents Incorporated into Soft Denture Liners: A Systematic Review. Materials, 18(8), 1764. https://doi.org/10.3390/ma18081764