AlNiCo Magnet with NdFeB-Nanocrystalline Phase Prepared by Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- AlNiCo powder with a spinodal structure and NdFeB powder with a nanocrystalline structure, which exhibit shape anisotropy and magnetocrystalline anisotropy, respectively, are sintered by SPS. The AlNiCo magnet with an NdFeB-nanocrystalline phase is prepared, in which the microstructure consists mainly of AlNiCo regions with a spinodal structure, NdFeB regions with a nanocrystalline structure, and an unavoidable transition region approximately 1~7 µm wide between them.
- The hysteresis loop of the AlNiCo magnet with the NdFeB-nanocrystalline phase shows single-phase magnetization behavior, in contrast with the double-phase magnetization observed in simple mixed powders. With the high coercivity and excellent coupling effect of the NdFeB-nanocrystalline phase, the coercivity of the AlNiCo magnet with the NdFeB-nanocrystalline phase increased from 1250 Oe of the AlNiCo powder to 2490 Oe.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SPS | spark plasma sinter |
H | magnetic field |
M | moment |
Hc | coercivity |
Mr | remanent magnetism |
Ms | saturation magnetism |
References
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Kramer, M.J.; McCallum, R.W.; Anderson, I.A. Constantinides, Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators. JOM 2012, 64, 752–763. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Sun, J.B.; Feng, J.H.; Ji, P.G.; Zhang, Y. Deformation mechanism of highly textured Alnico magnets. J. Alloys Compd. 2023, 94, 169334. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zhao, J.T.; Liu, Z.; Xia, W.X.; Zhu, S.M.; Lee, D.; Yan, A.R. The phase and microstructure analysis of Alnico magnets with high coercivity. J. Magn. Magn. Mater. 2015, 379, 58–62. [Google Scholar] [CrossRef]
- Zou, M.; Johnson, F.; Zhang, W.; Zhao, Q.; Rutkowski, S.F.; Zhou, L.; Kramer, M.J. Processing of alnico permanent magnets by advanced directional solidification methods. J. Magn. Magn. Mater. 2016, 420, 152–157. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, M.K.; Lu, P.; Ke, L.Q.; Skomski, R.; Dillon, H.; Xing, Q.; Palasyuk, A.; McCartney, M.R.; Smith, D.J.; et al. Architecture and magnetism of alnico. Acta Mater. 2014, 74, 224–233. [Google Scholar] [CrossRef]
- Luan, H.Y.; Zhao, Z.H.; Liu, Y.Q.; Liu, L.; Huang, M.; Zhou, B.; Ding, Y.; Zhao, J.T.; Sun, Y.L.; Yan, A.R. Effect of grain structure on the magnetic properties of AlNiCo 8 magnets, Mater. Today Commun. 2024, 40, 109844. [Google Scholar] [CrossRef]
- Zhu, S.M.; Zhao, J.T.; Xia, W.X.; Sun, Y.L.; Peng, Y.; Fu, J.C. Magnetic structure and coercivity mechanism of AlNiCo magnets studied by electron holography. J. Alloys Compd. 2017, 720, 401–407. [Google Scholar] [CrossRef]
- Xing, Q.; Miller, M.K.; Zhou, L.; Dillon, H.M.; McCallum, R.W.; Anderson, I.E.; Constantinides, S.; Kramer, M.J. Phase and elemental distributions in alnico magnetic materials. IEEE Trans. Magn. 2013, 49, 3314–3317. [Google Scholar] [CrossRef]
- Ahmad, Z.; Liu, Z.; Haq, A.u. Synthesis, magnetic and microstructural properties of Alnico magnets with additives. J. Magn. Magn. Mater. 2017, 428, 125–131. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ahmad, Z.; Haq, A.U.; Akhtar, S. Effects of Zr magneting on the microstructure and magnetic properties of Alnico permanent magnets. J. Magn. Magn. Mater. 2017, 44, 136–140. [Google Scholar] [CrossRef]
- Kulkarni, R.; Murty, B.S.; Srinivas, V. Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy. J. Alloys Compd. 2018, 746, 194–199. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, W.; Ke, L.Q.; Guo, W.; Poplawsky, J.D.; Anderson, I.E.; Kramer, M.J. Microstructural and magnetic property evolution with different heat-treatment conditions in an Alnico magnet. Acta Mater. 2017, 133, 73–80. [Google Scholar] [CrossRef]
- Rehman, S.U.; Jiang, Q.Z.; Lei, W.K.; Liu, K.; Zeng, L.L.; Ghazanfar, M.; Ahmad, T.; Liu, R.H.; Ma, S.C.; Zhong, Z.C. Microstructures and magnetic properties of cast alnico 8 permanent magnets under various heat treatment conditions. Phys. B Condens. Matter 2019, 552, 136–141. [Google Scholar] [CrossRef]
- Skomski, R.; Coey, J.M.D. Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater. 2016, 112, 3–8. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Valloppilly, S.; Li, X.Z.; Yue, L.P.; Skomski, R.; Anderson, I.; Kramer, M.; Tang, W.; Shield, J.; Sellmyer, D.J. Texture development and coercivity enhancement in cast alnico 9 magnets. AIP Adv. 2018, 8, 056215. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhao, J.T.; Zhao, Z.H.; Liu, L.; Huang, M.; Zhou, B.; Ding, Y.; Sun, Y.L.; Yan, A.R. Microstructure and magnetic properties of Dy-added Alnico magnets. J. Alloys Compd. 2024, 973, 172894. [Google Scholar] [CrossRef]
- Saheb, N.; Iqbal, Z.; Khalil, A.; Hakeem, A.S.; Al Aqeeli, N.; Laoui, T.; Al-Qutub, A.; Kirchner, R. Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. J. Nanomater. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Madugundo, R.; Rao, N.V.R.; Schönhöbel, A.M.; Salazar, D.; El-Gendy, A.A. Recent Developments in Nanostructured Permanent Magnet Materials and Their Processing Methods. In Magnetic Nanostructured Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 157–198. [Google Scholar] [CrossRef]
- Song, X.Y.; Liu, X.M.; Zhang, J.X. Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering. J. Am. Ceram. Soc. 2005, 89, 494–500. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Buravlev, I.Y.; Portnyagin, A.S.; Dvornik, M.I.; Mikhailenko, E.A.; Golub, A.V.; Zakharenko, A.M.; Sukhorada, A.E.; Talskikh, K.Y.; Buravleva, A.A.; et al. SPS hard metal alloy WC-8Ni-8Fe fabrication based on mechanochemical synthetic tungsten carbide powder. J. Alloys Compd. 2020, 816, 152547. [Google Scholar] [CrossRef]
- Papynov, E.K.; Portnyagin, A.S.; Modin, E.B.; Mayorov, V.Y.; Shichalin, O.O.; Golikov, A.P.; Pechnikov, V.S.; Gridasova, E.A.; Tananaev, I.G.; Avramenko, V.A. A complex approach to assessing porous structure of structured ceramics obtained by SPS technique. Mater. Charact. 2018, 145, 294–302. [Google Scholar] [CrossRef]
- Liu, S.; Kang, N.-H.; Feng, L.; Lee, S.-H.; Yu, J.-H.; Lee, J.-G. Anisotropic Nanocrystalline Nd-Fe-B-Based Magnets Produced by Spark Plasma Sintering Technique. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Samardak, V.Y.; Samardak, A.Y.; Borisov, S.A.; Antonov, V.A.; Mushtuk, P.S.; Shtarev, D.S.; Shichalin, O.O.; Belov, A.A.; Azon, S.A.; Rogachev, K.A.; et al. Investigation of the composition, structure and magnetic properties of the Nd2Fe14B ceramics dependence on the initial powder characteristics and spark plasma sintering modes. Vacuum 2023, 215, 112206. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Wang, J.M.; Yuan, Z.K.; Liu, R.J.; Zhu, M.G.; Liu, Z.; Chen, X.; Li, W.; Guo, Z.H. High cerium content (Nd-Pr-Ce)2Fe14B melt-spun ribbons with high coercivity. J. Rare Earths 2024, 42, 690–695. [Google Scholar] [CrossRef]
Phase | Parameters | |||
---|---|---|---|---|
a (Å) | c (Å) | Volume (Å3) | Content (wt%) | |
α1 | 2.78 | 2.78 | 21.5 | 26.0 |
α2 | 6.02 | 6.02 | 218.5 | 19.9 |
Nd2Fe14B | 8.5 | 12.6 | 115.0 | 54.1 |
Al | Ni | Co | Ti | Cu | Fe | Nd | |
---|---|---|---|---|---|---|---|
EDS-1 | - | - | 6.5 | - | - | 65.6 | 27.8 |
EDS-2 | 2.3 | 6.0 | 27.6 | 4.3 | 1.9 | 37.7 | 20.3 |
EDS-3 | 6.2 | 13.1 | 37.9 | 5.3 | 2.8 | 34.7 | - |
Phase | Al | Ni | Co | Ti | Cu | Fe | Nd |
---|---|---|---|---|---|---|---|
α1 | 2.5 | 7.6 | 38.6 | 1.6 | 1.7 | 48.0 | - |
α2 | 10.1 | 25.2 | 34.9 | 8.9 | 4.1 | 16.8 | - |
Nd2Fe14B | - | - | 6.4 | - | - | 69.5 | 24.1 |
Al | Ni | Co | Ti | Cu | Fe | Nd | |
---|---|---|---|---|---|---|---|
EDS-1 | 1.7 | 3.2 | 20.8 | 1.5 | 1.0 | 50.9 | 20.7 |
EDS-2 | 6.8 | 6.6 | 45.6 | 16.6 | 0.5 | 19.4 | 4.6 |
EDS-3 | 0.6 | - | 9.2 | 0.2 | - | 68.5 | 21.5 |
Sample | Hc (Oe) | Mr (emu/g) | Ms (emu/g) |
---|---|---|---|
A | 1250 | 39 | 110 |
B | 21,000 | 79 | 123 |
C | 3250 | 67 | 119 |
D | 2490 | 55 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, H.; Liu, Y.; Zhao, J.; Liu, L.; Yu, X.; Hu, T.; Sun, Y.; Ding, Y.; Yan, A. AlNiCo Magnet with NdFeB-Nanocrystalline Phase Prepared by Spark Plasma Sintering. Materials 2025, 18, 1847. https://doi.org/10.3390/ma18081847
Lan H, Liu Y, Zhao J, Liu L, Yu X, Hu T, Sun Y, Ding Y, Yan A. AlNiCo Magnet with NdFeB-Nanocrystalline Phase Prepared by Spark Plasma Sintering. Materials. 2025; 18(8):1847. https://doi.org/10.3390/ma18081847
Chicago/Turabian StyleLan, Haifeng, Yueqing Liu, Jiangtao Zhao, Lei Liu, Xiaoqiang Yu, Tianyu Hu, Yingli Sun, Yong Ding, and Aru Yan. 2025. "AlNiCo Magnet with NdFeB-Nanocrystalline Phase Prepared by Spark Plasma Sintering" Materials 18, no. 8: 1847. https://doi.org/10.3390/ma18081847
APA StyleLan, H., Liu, Y., Zhao, J., Liu, L., Yu, X., Hu, T., Sun, Y., Ding, Y., & Yan, A. (2025). AlNiCo Magnet with NdFeB-Nanocrystalline Phase Prepared by Spark Plasma Sintering. Materials, 18(8), 1847. https://doi.org/10.3390/ma18081847