Progress to a Gallium-Arsenide Deep-Center Laser
Abstract
:1. Introduction
2. Methods
3. Photoluminescence and Electroluminescence Studies
3.1. Total radiative output
3.2. Two measurements of radiative efficiency
3.3. Evidence of a high-quality energy-gap having few nonradiative traps within the original bandgap
3.4. Absence of saturation of the photoluminescence
3.5. Spectral shift of the electroluminescence (EL) and inhomogeneous broadening of the PL
3.6. A Franck-Condon shift
3.7. Photoluminescence at different excitation wavelengths shows that absorption occurs at shorter than 1 μm, but emission occurs at longer than 1 μm
3.8. Transparency in the novel material is achieved at near-zero injection
3.9. The new material has PL showing a high degree of temperature insensitivity
3.10. Electroluminescence spectra from p-n junction
3.11. Electroluminescence in the absence of a p-layer
3.12. Possible explanations for blue-shift of EL spectra from p-n junction: heating or internal electric fields?
3.13. Absence of bandedge emission and absence of free holes
3.14. Evidence of a small hole diffusion length in the deep-center layer
3.15. Fast depopulation of the lower-state of the optical transition
3.16. Summary
4. Stimulated Emission and Laser Action
4.1. Regimes of behavior in the L-I curve
5. Stimulated Emission
5.1. Superlinear L-I at specific wavelengths
5.2. Carrier population distribution and the L-I curve
5.3. The Bernard-Duraffourg criterion
5.4. Increasingly superlinear L-I with a resonant cavity
5.5. Observation of a gain larger than a significant loss
5.6. Summary
6. Laser Action
6.1. Evidence for laser action
6.2. Relevant optical modes
6.3. Increasingly superlinear L-I with better optical confinement
6.4. Single-pass geometry having a long optical path
6.5. Longer optical path with a resonant cavity
6.6. Optical emission spectra
6.7. Loss in optical modes, and the observation of a gain larger than a significant loss
6.8. Estimate of the optical gain
6.9. Net gain over a wide wavelength range
6.10. Carrier population pinning
6.11. Observation of increased radiative recombination rate with a resonant cavity
6.12. Stimulated-emission and Einstein B coefficient
6.13. Polarization of the optical emission
6.14. Spectral broadening of the Fabry-Perot modes
6.15. Effect of lossy cavity on mode structure
6.16. Small injection to achieve laser action
6.17. Summary
7. Conclusions
8. Outlook
Acknowledgements
References
- Park, H.G.; Kim, S.H.; Kwon, S.H.; Ju, Y.G.; Yang, J.K.; Baek, J.H.; Kim, S.B.; Lee, Y.H. Electrically driven single-cell photonic crystal laser. Science 2004, 305, 1444–1447. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P.; Dutta, N.K. Long-Wavelength Semiconductor Lasers; Van Nostrand Reinhold Co.: New York, NY, USA, 1986. [Google Scholar]
- Reitzenstein, S.; Bazhenov, A.; Gorbunov, A.; Hofmann, C.; Muench, S.; Loeffler, A.; Kamp, M.; Reithmaier, J.P.; Kulakovskii, V.D.; Forchel, A. Lasing in high-Q quantum-dot micropillar cavities. Appl. Phys. Lett. 2006, 89, 051107. [Google Scholar] [CrossRef]
- Luo, K.J.; Xu, J.Y.; Cao, H.; Ma, Y.; Chang, S.H.; Ho, S.T.; Solomon, G.S. Ultrafast dynamics of InAs/GaAs quantum-dot microdisk lasers. Appl. Phys. Lett. 2001, 78, 3397–3399. [Google Scholar] [CrossRef]
- Gupta, M.; Pan, J.L. Gallium-arsenide deep-center laser. Appl. Phys. B: Lasers Opt. 2009, 96, 719–725. [Google Scholar] [CrossRef]
- Gupta, M.; Pan, J.L. Stimulated-emission from GaAs deep-centers. Opt. Exp. 2009, in press. [Google Scholar]
- Pan, J.L.; McManis, J.E.; Gupta, M.; Young, M.P.; Woodall, J.M. Novel deep-centers for high-performance optical-materials. Appl. Phys. A 2008, 90, 105–112. [Google Scholar] [CrossRef]
- Williams, E.W. Evidence for self-activated Luminescence in GaAs: The gallium vacancy-donor center. Phys. Rev. 1968, 168, 922–928. [Google Scholar] [CrossRef]
- Vorobkalo, F.M.; Glinchuk, K.D.; Prokhorovich, A.V.; John, G. Effect of heat-treatment on 0.93, 1.0, and 1.28eV luminescence bands in n-GaAs. Phys. Stat. Sol. (a) 1973, 15, 287–293. [Google Scholar] [CrossRef]
- Vorobkalo, F.M.; Glinchuk, K.D.; Prokhorovich, A.V. Characteristics of 0.93 to 1.0eV luminescence bands in GaAs. Phys. Stat. Sol. (a) 1971, 7, 135–140. [Google Scholar] [CrossRef]
- Lei, H.; Leipner, H.S.; Bondarenko, V.; Schreiber, J. Identification of the 0.95 eV luminescence band in n-type GaAs:Si. J. Phys.: Cond. Matt. 2004, 16, S279–S285. [Google Scholar] [CrossRef]
- Tajima, M.; Toba, R.; Ishida, N.; Warashina, M. Optical and electrical non-uniformity around dislocations in silicon doped GaAs. Mat. Sci. Tech. 1997, 13, 949–953. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Gutkin, A.A.; Sedov, V.E. Structure of the 0.95eV photoluminescence centers in n-type GaAs. Mat. Sci. Forum 1995, 196-201, 237–242. [Google Scholar] [CrossRef]
- Suezawa, M.; Kasuya, A.; Nishina, Y.; Sumino, K. Optical studies of heat-treated Si-doped GaAs bulk crystals. J. Appl. Phys. 1991, 69, 1618–1623. [Google Scholar] [CrossRef]
- Kung, J.K.; Spitzer, W.G. Si-defect concentrations in heavily Si-doped GaAs: Changes induced by annealing. J. Appl. Phys. 1974, 45, 4477–4485. [Google Scholar] [CrossRef]
- Chiang, S.Y.; Pearson, G.L. Photoluminescence studies of vacancies and vacancy-impurity complexes in anealed GaAs. J. Luminescence 1975, 10, 313–322. [Google Scholar] [CrossRef]
- Sauncy, T.; Palsule, C.P.; Holtz, M.; Gangopadhyay, S.; Massie, S. Lifetime studies of self-activated photoluminescence in heavily silicon-doped GaAs. Phys. Rev. B 1996, 53, 1900–1906. [Google Scholar] [CrossRef]
- Suezawa, M.; Kasuya, A.; Nishina, Y.; Sumino, K. Excitation spectra of 1200 and 1320 nm photoluminescence lines in annealed gallium arsenide doped with silicon. J. Appl. Phys. 1994, 76, 1164–1168. [Google Scholar] [CrossRef]
- Ebert, Ph. Atomic structure of point defects in compound semiconductor surfaces. Curr. Opin. Solid St. M. 2001, 5, 211–250. [Google Scholar] [CrossRef]
- Gebauer, J.; Lausmann, M.; Staab, T.E.M.; Krause-Rehberg, R.; Hakala, M.; Puska, M.J. Microscopic identification of native donor Ga-vacancy complexes in Te-doped GaAs. Phys. Rev. B 1999, 60, 1464–1467. [Google Scholar] [CrossRef]
- Domke, C.; Ebert, Ph.; Urban, K. Changes of defect and active-dopant concentrations induced by annealing of highly Si-doped GaAs. Phys. Rev. B 1998, 57, 4482–4485. [Google Scholar] [CrossRef]
- Domke, C.; Ebert, Ph.; Heinrich, M.; Urban, K. Microscopic identification of the compensation mechanisms in Si-doped GaAs. Phys. Rev. B 1996, 54, 10288–10291. [Google Scholar] [CrossRef]
- Gebauer, J.; Krause-Rehberg, R.; Domke, C.; Ebert, Ph.; Urban, K. Identification and quantification of defects in highly Si-doped GaAs by positron annihilation and scanning tunneling microscopy. Phys. Rev. Lett. 1997, 78, 3334–3337. [Google Scholar] [CrossRef]
- Ito, H.; Furuta, T.; Ishibashi, T. Minority electron lifetimes in heavily doped p-type GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 1991, 58, 2936–2938. [Google Scholar] [CrossRef]
- Casey, H.C., Jr.; Stern, F. Concentration-dependent absorption and spontaneous emission of heavily doped GaAs. J. Appl. Phys. 1976, 47, 631–643. [Google Scholar] [CrossRef]
- Nelson, R.J.; Sobers, R.G. Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 1978, 49, 6103–6108. [Google Scholar] [CrossRef]
- Maassdorf, A.; Gramlich, S.; Richter, E.; Brunner, F.; Weyers, M.; Traenkle, G.; Tomm, J.W.; Mazur, Y.I.; Nickel, D.; Malyarchuk, V.; Guenther, T.; Lienau, Ch.; Baerwolff, A.; Elsaesserm, T. Minority-carrier kinetics in heavily doped GaAs:C studied by transient photoluminescence. J. Appl. Phys. 2002, 91, 5072–5078. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Cody, G. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 1982, ED-29, 300–305. [Google Scholar] [CrossRef]
- Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Amer. 1982, 72, 899. [Google Scholar] [CrossRef]
- Pan, J.L. Surface and interface studies of GaAs deep-centers for high-efficiency 1.3um-1.5um fiber-optic light-emitters. In Proceedings of the 34th Conference on the Physics and Chemistry of Semiconductor Interfaces (PCSI-34), Salt Lake City, Utah, USA, 14-18 January 2007. Paper Tu1110.
- Pan, J.L. Fast carrier dynamics in GaAs deep-centers for novel high-efficiency light-emitters for 1.3um-1.5um fiber optics. In SPIE Proceedings, Photonics West, Optoelectronics 2007 Symposium on Integrated Optoelectronic Devices, Conference 6471A: Ultrafast Phenomena in Semiconductors and Nanostructure Materials XI, San Jose, California, USA, 22-24 January 2007. Paper 6471A-36.
- Melloch, M.R.; Woodall, J.M.; Harmon, E.S.; Otsuka, N.; Pollak, F.H.; Nolte, D.D.; Feenstra, R.M.; Lutz, M.A. Low-temperature grown III-V materials. Ann. Rev. Mater. Sci. 1995, 25, 547–600. [Google Scholar] [CrossRef]
- Melloch, M.R.; Nolte, D.D.; Woodall, J.M.; Chang, J.C.P.; Harmon, E.S. Molecular beam epitaxy of nonstoichiometric semiconductors and multiphase material systems. Crit. Rev. Sol. St. Mater. Sci. 1996, 21, 189–263. [Google Scholar] [CrossRef]
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Yariv, A. Quantum Electronics, 2nd ed.; John Wiley: New York, NY, USA, 1975. [Google Scholar]
- Yamamoto, Y.; Slusher, R.E. Optical processes in microcavities. Phys. Today 1993, 46, 66–73. [Google Scholar] [CrossRef]
- Rex, N.B.; Chang, R.K.; Guido, L.J. Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping. IEEE Phot. Tech. Lett. 2001, 13, 1–3. [Google Scholar] [CrossRef]
- Chang, S.; Rex, N.B.; Chang, R.K.; Chong, G.; Guido, L.J. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities. Appl. Phys. Lett. 1999, 75, 166–168. [Google Scholar] [CrossRef]
- Ates, S.; Ulrich, S.M.; Michler, P.; Reitzenstein, S.; Loeffler, A.; Forchel, A. Coherence properties of high-β elliptical semiconductor micropillar lasers. Appl. Phys. Lett. 2007, 90, 161111. [Google Scholar] [CrossRef]
- Hall, R.N.; Fenner, G.E.; Kingsley, J.D.; Soltys, T.J.; Carlson, R.O. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 1962, 9, 366–368. [Google Scholar] [CrossRef]
- Khan, M.A.; Olson, D.T.; Van Hove, J.M.; Kuznia, J.N. Vertical-cavity, room-temperature stimulated emission from photopumped GaN films deposited over sapphire substrates using low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 1991, 58, 1515–1517. [Google Scholar] [CrossRef]
- Jacobs, R.R.; Samelson, H.; Lempicki, A. Losses in cw dye lasers. J. Appl. Phys. 1973, 44, 263–272. [Google Scholar] [CrossRef]
- Bernard, M.G.A.; Duraffourg, B. Laser conditions in semiconductors. Phys. Stat. Sol. 1961, 1, 699–703. [Google Scholar] [CrossRef]
- Inhomogeneously broadened quantum dot transitions, which show photoluminescence over a 82 nm FWHM, will then exhibit laser action over a broad 40 nm wavelength range [45,46,47]. The literature [45,46,47] shows that when the homogeneous broadening is less than the inhomogeneous broadening, the ensemble of quantum-dots acts as an array of independent lasers. In such cases, individual Fabry-Perot modes cannot be observed.
- Djie, H.S.; Ooi, B.S.; Fang, X.M.; Wu, Y.; Fastenau, J.M.; Liu, W.K. Room-temperature broadband emission of an InGaAs / GaAs quantum dots laser. Opt. Lett. 2007, 32, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.L.; Wang, Y.; Djie, H.S.; Ooi, B.S. Role of optical gain broadening in the broadband semiconductor quantum-dot laser. Appl. Phys. Lett. 2007, 91, 061117. [Google Scholar] [CrossRef]
- Markus, A.; Chen, J.X.; Paranthoen, C.; Fiore, A.; Platz, C.; Gauthier-Lafaye, O. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 2003, 82, 1818–1820. [Google Scholar] [CrossRef]
- Cao, H.; Ling, Y.; Xu, J.Y.; Cao, C.Q.; Kumar, P. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 2001, 86, 4524–4527. [Google Scholar] [CrossRef] [PubMed]
- Sze, S. Physics of Semiconductor Devices; John Wiley: New York, NY, USA, 1981; p. 53. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Pan, J.L. Progress to a Gallium-Arsenide Deep-Center Laser. Materials 2009, 2, 1599-1635. https://doi.org/10.3390/ma2041599
Pan JL. Progress to a Gallium-Arsenide Deep-Center Laser. Materials. 2009; 2(4):1599-1635. https://doi.org/10.3390/ma2041599
Chicago/Turabian StylePan, Janet L. 2009. "Progress to a Gallium-Arsenide Deep-Center Laser" Materials 2, no. 4: 1599-1635. https://doi.org/10.3390/ma2041599