Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties
Abstract
:1. Introduction
2. Synthesis and Properties of Quantum Dots
3. Ligand Exchange and Design
4. Quantum Dots in Biological Imaging, Tracking, and FRET
5. LEDS and Lasers
6. Solar Cells
7. Summary
Acknowledgements
References and Notes
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; RodriguezViejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239. [Google Scholar] [CrossRef]
- Nozik, A.J. Fundamentals and applications of quantum-confined structures. In Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion; Archer, M.D., Nozik, A.J., Eds.; Imperial College Press: London, UK, 2008; pp. 147–208. [Google Scholar]
- Lu, W.G.; Fang, J.Y.; Ding, Y.; Wang, Z.L. Formation of PbSe nanocrystals: A growth toward nanocubes. J. Phys. Chem. B 2005, 109, 19219–19222. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M.S.; Berger, S. Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett. 2003, 3, 857–862. [Google Scholar] [CrossRef]
- Jun, Y.W.; Seo, J.W.; Oh, S.J.; Cheon, J. Recent advances in the shape control of inorganic nano-building blocks. Coord. Chem. Rev. 2005, 249, 1766–1775. [Google Scholar] [CrossRef]
- Yin, Y.; Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Talapin, D.V.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1, 207–211. [Google Scholar] [CrossRef]
- Peng, X.G.; Manna, L.; Yang, W.D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463. [Google Scholar] [CrossRef]
- Manna, L.; Scher, E.C.; Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706. [Google Scholar] [CrossRef]
- Houtepen, A.J.; Koole, R.; Vanmaekelbergh, D.L.; Meeldijk, J.; Hickey, S.G. The hidden role of acetate in the PbSe nanocrystal synthesis. J. Am. Chem. Soc. 2006, 128, 6792–6793. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.G.; Wickham, J.; Alivisatos, A.P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344. [Google Scholar] [CrossRef]
- Murray, C.B.; Sun, S.H.; Gaschler, W.; Doyle, H.; Betley, T.A.; Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56. [Google Scholar] [CrossRef]
- Steigerwald, M.L.; Alivisatos, A.P.; Gibson, J.M.; Harris, T.D.; Kortan, R.; Muller, A.J.; Thayer, A.M.; Duncan, T.M.; Douglass, D.C.; Brus, L.E. Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 1988, 110, 3046–3050. [Google Scholar] [CrossRef]
- Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655. [Google Scholar] [CrossRef]
- Peng, X.G.; Schlamp, M.C.; Kadavanich, A.V.; Alivisatos, A.P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029. [Google Scholar] [CrossRef]
- Kortan, A.R.; Hull, R.; Opila, R.L.; Bawendi, M.G.; Steigerwald, M.L.; Carroll, P.J.; Brus, L.E. Nucleation and growth of Cdse on Zns quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 1990, 112, 1327–1332. [Google Scholar] [CrossRef]
- Hines, M.A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471. [Google Scholar] [CrossRef]
- Tian, Y.; Newton, T.; Kotov, N.A.; Guldi, D.M.; Fendler, J.H. Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J. Phys. Chem. 1996, 100, 8927–8939. [Google Scholar] [CrossRef]
- Mekis, I.; Talapin, D.V.; Kornowski, A.; Haase, M.; Weller, H. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and "greener" chemical approaches. J. Phys. Chem. B 2003, 107, 7454–7462. [Google Scholar] [CrossRef]
- Sashchiuk, A.; Langof, L.; Chaim, R.; Lifshitz, E. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals. J. Cryst. Growth 2002, 240, 431–438. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010. [Google Scholar] [CrossRef]
- Munro, A.M.; Plante, I.J.L.; Ng, M.S.; Ginger, D.S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 2007, 111, 6220–6227. [Google Scholar] [CrossRef]
- Schreuder, M.A.; McBride, J.R.; Dukes, A.D.; Sammons, J.A.; Rosenthal, S.J. Control of surface state emission via phosphonic acid modulation in ultrasmall CdSe nanocrystals: The role of ligand electronegativity. J. Phys. Chem. C 2009, 113, 8169–8176. [Google Scholar] [CrossRef]
- Dorokhin, D.; Tomczak, N.; Velders, A.H.; Reinhoudt, D.N.; Vancso, G.J. Photoluminescence quenching of CdSe/ZnS quantum dots by molecular ferrocene and ferrocenyl thiol ligands. J. Phys. Chem. C 2009, 113, 18676–18680. [Google Scholar] [CrossRef]
- Munro, A.M.; Ginger, D.S. Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption. Nano Lett. 2008, 8, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, H.T.; Medintz, I.L.; Jaiswal, J.K.; Simon, S.M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127, 3870–3878. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Choi, S.K.; Arnheim, N.; Thompson, M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 2001, 123, 4103–4104. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.; Wang, Y.A.; Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850. [Google Scholar] [CrossRef] [PubMed]
- Querner, C.; Reiss, P.; Bleuse, J.; Pron, A. Chelating ligands for nanocrystals' surface functionalization. J. Am. Chem. Soc. 2004, 126, 11574–11582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; O'Brien, S.; Balogh, L. Comparison and stability of cdse nanocrystals covered with amphiphilic poly(amidoamine) dendrimers. J. Phys. Chem. B 2002, 106, 10316–10321. [Google Scholar] [CrossRef]
- Guo, W.Z.; Li, J.J.; Wang, Y.A.; Peng, X.G. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 2003, 15, 3125–3133. [Google Scholar] [CrossRef]
- Pinaud, F.; King, D.; Moore, H.P.; Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 2004, 126, 6115–6123. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bawendi, M.G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 2003, 125, 14652–14653. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kim, S.; Tracy, J.B.; Jasanoff, A.; Bawendi, M.G. Phosphine oxide polymer for water-soluble nanoparticles. J. Am. Chem. Soc. 2005, 127, 4556–4557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ge, J.; Hu, Y.; Yin, Y. A general approach for transferring hydrophobic nanocrystals into water. Nano Lett. 2007, 7, 3203–3207. [Google Scholar] [CrossRef] [PubMed]
- Talapin, D.V.; Rogach, A.L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf. A 2002, 202, 145–154. [Google Scholar] [CrossRef]
- Bullen, C.; Mulvaney, P. The Effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 2006, 22, 3007–3013. [Google Scholar] [CrossRef] [PubMed]
- Wuister, S.F.; Swart, I.; van Driel, F.; Hickey, S.G.; Donega, C.D. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507. [Google Scholar] [CrossRef]
- Puzder, A.; Williamson, A.J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A.P. The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab initio calculations. Nano Lett. 2004, 4, 2361–2365. [Google Scholar] [CrossRef]
- Pong, B.-K.; Trout, B.L.; Lee, J.-Y. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 2008, 24, 5270–5276. [Google Scholar] [CrossRef] [PubMed]
- Schapotschnikow, P.; Hommersom, B.; Vlugt, T.J.H. Adsorption and binding of ligands to CdSe nanocrystals. J. Phys. Chem. C 2009, 113, 12690–12698. [Google Scholar] [CrossRef]
- Wang, M.; Oh, J.K.; Dykstra, T.E.; Lou, X.; Scholes, G.D.; Winnik, M.A. Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 2006, 39, 3664–3672. [Google Scholar] [CrossRef]
- Wang, M.; Felorzabihi, N.; Guerin, G.; Haley, J.C.; Scholes, G.D.; Winnik, M.A. Water-soluble CdSe quantum dots passivated by a multidentate diblock copolymer. Macromolecules 2007, 40, 6377–6384. [Google Scholar] [CrossRef]
- Algar, W.R.; Krull, U.J. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates. Langmuir 2008, 24, 5514–5520. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Nie, S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J. Am. Chem. Soc. 2008, 130, 11278–11279. [Google Scholar] [CrossRef] [PubMed]
- Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A.L.; Keller, S.; Radler, J.; Natile, G.; Parak, W.J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707. [Google Scholar] [CrossRef]
- Milliron, D.J.; Alivisatos, A.P.; Pitois, C.; Edder, C.; Fréchet, J.M.J. Electroactive surfactant designed to mediate electron transfer between CdSe nanocrystals and organic semiconductors. Adv. Mater. 2003, 15, 58–61. [Google Scholar] [CrossRef]
- Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.B.; Xu, Y.; Zhao, X.H.; Chang, Y.; Liu, Y.; Jiang, L.J.; Sharma, J.; Seo, D.K.; Yan, H. A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J. Am. Chem. Soc. 2007, 129, 6380–6381. [Google Scholar] [CrossRef] [PubMed]
- Skaff, H.; Sill, K.; Emrick, T. Quantum dots tailored with poly(para-phenylene vinylene). J. Am. Chem. Soc. 2004, 126, 11322–11325. [Google Scholar] [CrossRef] [PubMed]
- Odoi, M.Y.; Hammer, N.I.; Sill, K.; Emrick, T.; Barnes, M.D. Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures. J. Am. Chem. Soc. 2006, 128, 3506–3507. [Google Scholar] [CrossRef] [PubMed]
- Ginger, D.S.; Greenham, N.C. Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys. Rev. B 1999, 59, 10622–10629. [Google Scholar] [CrossRef]
- Hammer, N.I.; Early, K.T.; Sill, K.; Odoi, M.Y.; Emrick, T.; Barnes, M.D. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures. J. Phys. Chem. B 2006, 110, 14167–14171. [Google Scholar] [CrossRef] [PubMed]
- Hammer, N.I.; Emrick, T.; Barnes, M.D. Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res. Lett. 2007, 2, 282–290. [Google Scholar] [CrossRef]
- Odoi, M.Y.; Hammer, N.I.; Early, K.T.; McCarthy, K.D.; Tangirala, R.; Emrick, T.; Barnes, M.D. Fluorescence lifetimes and correlated photon statistics from single CdSe/oligo(phenylene vinylene) composite nanostructures. Nano Lett. 2007, 7, 2769–2773. [Google Scholar] [CrossRef] [PubMed]
- Early, K.T.; McCarthy, K.D.; Hammer, N.I.; Odoi, M.Y.; Tangirala, R.; Emrick, T.; Barnes, M.D. Blinking suppression and intensity recurrences in single CdSe-oligo(phenylene vinylene) nanostructures: experiment and kinetic model. Nanotechnology 2007, 18, 424027. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, P.K.; Early, K.T.; McCarthy, K.D.; Odoi, M.Y.; Barnes, M.D.; Emrick, T. Monodisperse Oligo(phenylene vinylene) Ligands on CdSe Quantum Dots: Synthesis and Polarization Anisotropy Measurements. J. Am. Chem. Soc. 2008, 130, 2384–2385. [Google Scholar] [CrossRef] [PubMed]
- Ballou, B.; Lagerholm, B.C.; Ernst, L.A.; Bruchez, M.P.; Waggoner, A.S. Noninvasive Imaging of Quantum Dots in Mice. Bioconjugate Chem. 2004, 15, 79–86. [Google Scholar] [CrossRef]
- Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. [Google Scholar] [CrossRef]
- Yu, W.W.; Chang, E.; Drezek, R.; Colvin, V.L. Water-soluble quantum dots for biomedical applications. Biochem. Biophys. Res. Commun. 2006, 348, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.; Mattoussi, H. Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 2009, 37, 1934–1959. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Cao, E.; Davidson, M.C.; Jin, S.; Silva, G.A. Quantum dot applications to neuroscience: New tools for probing neurons and glia. J. Neurosci. 2006, 26, 1893–1895. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2002, 21, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Mahtab, R.; Harden, H.H.; Murphy, C.J. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: Thermodynamics of "inorganic protein" - DNA interactions. J. Am. Chem. Soc. 1999, 122, 14–17. [Google Scholar] [CrossRef]
- Mitchell, G.P.; Mirkin, C.A.; Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 1999, 121, 8122–8123. [Google Scholar] [CrossRef]
- Sun, B.; Xieb, W.; Yia, G.; Chen, D.; Zhoub, Y.; Chengb, J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods 2001, 249, 85–89. [Google Scholar] [CrossRef]
- Han, M.; Gao, X.; Su, J.Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P. Turning the spotlight on cellular imaging. Nat. Biotechnol. 2001, 19, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Christof, M.N. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 2001, 40, 4128–4158. [Google Scholar] [CrossRef]
- Kim, S.; Lim, Y.T.; Soltesz, E.G.; De Grand, A.M.; Lee, J.; Nakayama, A.; Parker, J.A.; Mihaljevic, T.; Laurence, R.G.; Dor, D.M.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.R.; Zipfel, W.R.; Williams, R.M.; Clark, S.W.; Bruchez, M.P.; Wise, F.W.; Webb, W.W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436. [Google Scholar] [CrossRef] [PubMed]
- Alivisatos, A.P.; Gu, W.W.; Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005, 7, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Alivisatos, P. Colloidal quantum dots. From scaling laws to biological applications. Pure Appl. Chem. 2000, 72, 3–9. [Google Scholar] [CrossRef]
- Jiang, W.; Mardyani, S.; Fischer, H.; Chan, W.C.W. Design and characterization of lysine cross-linked mereapto-acid biocompatible quantum dots. Chem. Mater. 2006, 18, 872–878. [Google Scholar] [CrossRef]
- Schroedter, A.; Weller, H.; Eritja, R.; Ford, W.E.; Wessels, J.M. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Lett. 2002, 2, 1363–1367. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Gao, S.J.; Ying, J.Y. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 2007, 19, 376–380. [Google Scholar] [CrossRef]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Parak, W.J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S.C.; Boudreau, R.; Le Gros, M.A.; Larabell, C.A.; Alivisatos, A.P. Biological applications of colloidal nanocrystals. Nanotechnology 2003, 14, R15–R27. [Google Scholar] [CrossRef]
- Gao, X.H.; Nie, S.M. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 2003, 21, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Michalet, X.; Pinaud, F.; Lacoste, T.D.; Dahan, M.; Bruchez, M.P.; Alivisatos, A.P.; Weiss, S. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol. 2001, 2, 261–276. [Google Scholar] [CrossRef]
- Sutherland, A.J. Quantum dots as luminescent probes in biological systems. Curr. Opin. Solid State Mater. Sci. 2002, 6, 365–370. [Google Scholar] [CrossRef]
- Watson, A.; Wu, X.Y.; Bruchez, M. Lighting up cells with quantum dots. BioTechniques 2003, 34, 296–300. [Google Scholar] [PubMed]
- Yu, W.W.; Chang, E.; Falkner, J.C.; Zhang, J.; Al-Somali, A.M.; Sayes, C.M.; Johns, J.; Drezek, R.; Colvin, V.L. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 2007, 129, 2871–2879. [Google Scholar] [CrossRef] [PubMed]
- Murcia, M.J.; Minner, D.E.; Mustata, G.-M.; Ritchie, K.; Naumann, C.A. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. J. Am. Chem. Soc. 2008, 130, 15054–15062. [Google Scholar] [CrossRef] [PubMed]
- Gerion, D.; Pinaud, F.; Williams, S.C.; Parak, W.J.; Zanchet, D.; Weiss, S.; Alivisatos, A.P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871. [Google Scholar] [CrossRef]
- Liu, W.; Howarth, M.; Greytak, A.B.; Zheng, Y.; Nocera, D.G.; Ting, A.Y.; Bawendi, M.G. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008, 130, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Jawaid, A.M.; Snee, P.T. Poly(ethylene glycol) carbodiimide coupling reagents for the biological and chemical functionalization of water-soluble nanoparticles. Acs Nano 2009, 3, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.W.; Nie, S.M. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc. 2007, 129, 3333–3338. [Google Scholar] [CrossRef] [PubMed]
- Susumu, K.; Uyeda, H.T.; Medintz, I.L.; Pons, T.; Delehanty, J.B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996. [Google Scholar] [CrossRef] [PubMed]
- Warnement, M.R.; Tomlinson, I.D.; Chang, J.C.; Schreuder, M.A.; Luckabaugh, C.M.; Rosenthal, S.J. Controlling the reactivity of ampiphilic quantum dots in biological assays through hydrophobic assembly of custom PEG derivatives. Bioconjugate Chem. 2008, 19, 1404–1413. [Google Scholar] [CrossRef]
- Zhou, D.J.; Ying, L.M.; Hong, X.; Hall, E.A.; Abell, C.; Klenerman, D. A compact functional quantum dot-DNA conjugate: Preparation, hybridization, and specific label-free DNA detection. Langmuir 2008, 24, 1659–1664. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal. Chem. 2006, 79, 208–214. [Google Scholar] [CrossRef]
- Yildiz, I.; McCaughan, B.; Cruickshank, S.F.; Callan, J.F.; Raymo, F.M. Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols. Langmuir 2009, 25, 7090–7096. [Google Scholar] [CrossRef] [PubMed]
- Susumu, K.; Mei, B.C.; Mattoussi, H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat. Protocol. 2009, 4, 424–436. [Google Scholar] [CrossRef]
- Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P.H. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J. Am. Chem. Soc. 2009, 131, 2110–2112. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.N.; Nair, A.B.; Hammer, N.I.; Vaka, S.R.K.; Wright, A.E. Dermatokinetics of Nanoparticles. Unpublished work.
- Willard, D.M.; Carillo, L.L.; Jung, J.; Van Orden, A. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 2001, 1, 469–474. [Google Scholar] [CrossRef]
- Mamedova, N.N.; Kotov, N.A.; Rogach, A.L.; Studer, J. Albumin-CdTe nanoparticle bioconjugates: Preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 2001, 1, 281–286. [Google Scholar] [CrossRef]
- Clapp, A.R.; Medintz, I.L.; Mauro, J.M.; Fisher, B.R.; Bawendi, M.G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 2004, 126, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Medintz, I.L.; Trammell, S.A.; Mattoussi, H.; Mauro, J.M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 2004, 126, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Hohng, S.; Ha, T. Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem 2005, 6, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Clapp, A.R.; Medintz, I.L.; Uyeda, H.T.; Fisher, B.R.; Goldman, E.R.; Bawendi, M.G.; Mattoussi, H. Quantum dot-based multiplexed fluorescence resonance energy transfer. J. Am. Chem. Soc. 2005, 127, 18212–18221. [Google Scholar] [CrossRef] [PubMed]
- Clapp, A.R.; Medintz, I.L.; Fisher, B.R.; Anderson, G.P.; Mattoussi, H. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J. Am. Chem. Soc. 2005, 127, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.J.; Piper, J.D.; Abell, C.; Klenerman, D.; Kang, D.J.; Ying, L.M. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. 2005, 4807–4809. [Google Scholar] [CrossRef]
- Medintz, I.L.; Clapp, A.R.; Melinger, J.S.; Deschamps, J.R.; Mattoussi, H. A reagentless biosensing assembly based on quantum dot-donor Forster resonance energy transfer. Adv. Mater. 2005, 17, 2450–2455. [Google Scholar] [CrossRef]
- Pompa, P.P.; Chiuri, R.; Manna, L.; Pellegrino, T.; del Mercato, L.L.; Parak, W.J.; Calabi, F.; Cingolani, R.; Rinaldi, R. Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles. Chem. Phys. Lett. 2006, 417, 351–357. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Johnson, L.W. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Anal. Chem. 2006, 78, 5532–5537. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.; Medintz, I.L.; Sykora, M.; Mattoussi, H. Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies. Phys. Rev. B 2006, 73, 245302. [Google Scholar] [CrossRef]
- Samia, A.C.S.; Dayal, S.; Burda, C. Quantum dot-based energy transfer: Perspectives and potential for applications in photodynamic therapy. Photochem. Photobiol. 2006, 82, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Clapp, A.R.; Medintz, I.L.; Mattoussi, H. Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006, 7, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Forster, T. 10th spiers memorial lecture—Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 7–17. [Google Scholar] [CrossRef]
- Kagan, C.R.; Murray, C.B.; Nirmal, M.; Bawendi, M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Bawendi, M.G.; Onitsuka, O.; Rubner, M.F. Electroluminescence from Cdse quantum-dot polymer composites. Appl. Phys. Lett. 1995, 66, 1316–1318. [Google Scholar] [CrossRef]
- Lee, J.; Sundar, V.C.; Heine, J.R.; Bawendi, M.G.; Jensen, K.F. Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 2000, 12, 1102–1105. [Google Scholar] [CrossRef]
- Coe, S.; Woo, W.K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.H.; Banin, U. Efficient near-infrared polymer nanocrystat light-emitting diodes. Science 2002, 295, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.H.; Petruska, M.A.; Achermann, M.; Werder, D.J.; Akhadov, E.A.; Koleske, D.D.; Hoffbauer, M.A.; Klimov, V.I. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 2005, 5, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Bardecker, J.A.; Munro, A.M.; Liu, M.S.; Niu, Y.H.; Ding, I.K.; Luo, J.D.; Chen, B.Q.; Jen, A.K.Y.; Ginger, D.S. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 2006, 6, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Steckel, J.S.; Coe-Sullivan, S.; Bulovic, V.; Bawendi, M.G. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 2003, 15, 1862–1866. [Google Scholar] [CrossRef]
- Steckel, J.S.; Snee, P.; Coe-Sullivan, S.; Zimmer, J.R.; Halpert, J.E.; Anikeeva, P.; Kim, L.A.; Bulovic, V.; Bawendi, M.G. Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Ed. 2006, 45, 5796–5799. [Google Scholar] [CrossRef]
- Schlamp, M.C.; Peng, X.G.; Alivisatos, A.P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 1997, 82, 5837–5842. [Google Scholar] [CrossRef]
- Bertoni, C.; Gallardo, D.; Dunn, S.; Gaponik, N.; Eychmuller, A. Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals. Appl. Phys. Lett. 2007, 90, 034107. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.Y.; Lesser, C.; Kirstein, S.; Mohwald, H.; Rogach, A.L.; Weller, H. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J. Appl. Phys. 2000, 87, 2297–2302. [Google Scholar] [CrossRef]
- Lin, Y.W.; Tseng, W.L.; Chang, H.T. Using a layer-by-layer assembly technique to fabricate multicolored-light-emitting films of CdSe@CdS and CdTe quantum dots. Adv. Mater. 2006, 18, 1381–1386. [Google Scholar] [CrossRef]
- Li, Y.Q.; Rizzo, A.; Cingolani, R.; Gigli, G. Bright white-light-emitting device from ternary nanocrystal composites. Adv. Mater. 2006, 18, 2545–2548. [Google Scholar] [CrossRef]
- Sun, Q.J.; Subramanyam, G.; Dai, L.M.; Check, M.; Campbell, A.; Naik, R.; Grote, J.; Wang, Y.Q. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer. Acs Nano 2009, 3, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Zorn, M.; Bae, W.K.; Kwak, J.; Lee, H.; Lee, C.; Zentel, R.; Char, K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. Acs Nano 2009, 3, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941. [Google Scholar] [CrossRef]
- Eisler, H.J.; Sundar, V.C.; Bawendi, M.G.; Walsh, M.; Smith, H.I.; Klimov, V. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 2002, 80, 4614–4616. [Google Scholar] [CrossRef]
- Sundar, V.C.; Eisler, H.J.; Bawendi, M.G. Room-temperature, tunable gain media from novel II-VI nanocrystal-titania composite matrices. Adv. Mater. 2002, 14, 739–743. [Google Scholar] [CrossRef]
- Sundar, V.C.; Eisler, H.J.; Deng, T.; Chan, Y.T.; Thomas, E.L.; Bawendi, M.G. Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers. Adv. Mater. 2004, 16, 2137–2141. [Google Scholar] [CrossRef]
- Chan, Y.; Steckel, J.S.; Snee, P.T.; Caruge, J.M.; Hodgkiss, J.M.; Nocera, D.G.; Bawendi, M.G. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 2005, 86, 073102. [Google Scholar] [CrossRef]
- Huang, X.; Stintz, A.; Hains, C.P.; Liu, G.T.; Cheng, J.; Malloy, K.J. Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser. Photonics Technol. Lett. IEEE 2000, 12, 227–229. [Google Scholar] [CrossRef]
- Kovsh, A.R.; Maleev, N.A.; Zhukov, A.E.; Mikhrin, S.S.; Vasil'ev, A.P.; Shernyakov, Y.M.; Maximov, M.V.; Livshits, D.A.; Ustinov, V.M.; Alferov, Z.I.; Ledentsov, N.N.; Bimberg, D. InAs/InGaAs/GaAs quantum dot lasers of 1.3 micron range with high (88%) differential efficiency. Electron. Lett 2002, 38, 1104–1106. [Google Scholar] [CrossRef]
- Markus, A.; Chen, J.X.; Paranthoen, C.; Fiore, A.; Platz, C.; Gauthier-Lafaye, O. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 2003, 82, 1818–1820. [Google Scholar] [CrossRef]
- Wang, J.-S.; Hsiao, R.-S.; Chen, J.-F.; Yang, C.-S.; Lin, G.; Liang, C.-Y.; Lai, C.-M.; Liu, H.-Y.; Chi, T.-W.; Chi, J.-Y. Engineering laser gain spectrum using electronic vertically coupled InAs-GaAs quantum dots. Photonics Technol. Lett. IEEE 2005, 17, 1590–1592. [Google Scholar] [CrossRef]
- Renner, J.; Worschech, L.; Forchel, A.; Mahapatra, S.; Brunner, K. CdSe quantum dot microdisk laser. Appl. Phys. Lett. 2006, 89, 231104. [Google Scholar] [CrossRef]
- Liu, C.Y.; Yoon, S.F.; Cao, Q.; Tong, C.Z.; Li, H.F. Low transparency current density and high temperature operation from ten-layer p-doped 1.3 mu m InAs/InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 2007, 90, 041103. [Google Scholar] [CrossRef]
- Kouichi, A.; Naokatsu, Y.; Masahiro, T. Highly stacked quantum-dot laser fabricated using a strain compensation technique. Appl. Phys. Lett. 2008, 93, 041121. [Google Scholar] [CrossRef]
- Artemyev, M.V.; Woggon, U.; Wannemacher, R.; Jaschinski, H.; Langbein, W. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Lett. 2001, 1, 309–314. [Google Scholar] [CrossRef]
- Klimov, V.I.; Mikhailovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; Eisler, H.J.; Bawendi, M.G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Nishi, K.; Sugou, S. Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates. Appl. Phys. Lett. 2001, 78, 267–269. [Google Scholar] [CrossRef]
- Moser, J.E.; Bonnôte, P.; Grätzel, M. Molecular photovoltaics. Coord. Chem. Rev. 1998, 171, 245–250. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. 2000, 8, 171–185. [Google Scholar] [CrossRef]
- Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisatos, A.P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.J. Quantum dot solar cells. Physica E 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S.; Tanaka, T.; Sivula, K.; Alivisatos, A.P.; Frechet, J.M.J. Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc. 2004, 126, 6550–6551. [Google Scholar] [CrossRef] [PubMed]
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, Y.; Akiyama, H.Y.; Ohtsuka, Y.; Torimoto, T.; Kuwabata, S. CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 2007, 36, 88–89. [Google Scholar] [CrossRef]
- Mora-Sero, I.; Bisquert, J.; Dittrich, T.; Belaidi, A.; Susha, A.S.; Rogach, A.L. Photosensitization of TiO2 layers with CdSe quantum dots: Correlation between light absorption and photoinjection. J. Phys. Chem. C 2007, 111, 14889–14892. [Google Scholar] [CrossRef]
- Kamat, P.V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Lee, H.J.; Yum, J.-H.; Leventis, H.C.; Zakeeruddin, S.M.; Haque, S.A.; Chen, P.; Seok, S.I.; Grätzel, M.; Nazeeruddin, M.K. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 2008, 112, 11600–11608. [Google Scholar] [CrossRef]
- Cui, S.-C.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Interfacial electron transfer dynamics in a single CdTe quantum dot-pyromellitimide conjugate. J. Phys. Chem. C 2008, 112, 19625–19634. [Google Scholar] [CrossRef]
- Farrow, B.; Kamat, P.V. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 2009, 131, 11124–11131. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, Y.; Umekita, K.; Otsuka, Y.; Kuwabata, S. Charge recombination kinetics at an in situ chemical bath-deposited CdS/nanocrystalline TiO2 interface. J. Phys. Chem. C 2009, 113, 6852–6858. [Google Scholar] [CrossRef]
- Shalom, M.; Dor, S.; Ruhle, S.; Grinis, L.; Zaban, A. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 2009, 113, 3895–3898. [Google Scholar] [CrossRef]
- Guijarro, N.; Lana-Villarreal, T.; Mora-Sero, I.; Bisquert, J.; Gomez, R. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment. J. Phys. Chem. C 2009, 113, 4208–4214. [Google Scholar] [CrossRef]
- Tvrdy, K.; Kamat, P.V. Substrate driven photochemistry of CdSe quantum dot films: Charge injection and irreversible transformations on oxide surfaces. J. Phys. Chem. A 2009, 113, 3765–3772. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V.; Schatz, G.C. Nanotechnology for next generation solar cells. J. Phys. Chem. C 2009, 113, 15473–15475. [Google Scholar] [CrossRef]
- Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106, 7578–7580. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef] [PubMed]
- Barkhouse, D.A.R.; Pattantyus-Abraham, A.G.; Levina, L.; Sargent, E.H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2008, 2, 2356–2362. [Google Scholar] [CrossRef] [PubMed]
- Kitada, S.; Kikuchi, E.; Ohno, A.; Aramaki, S.; Maenosono, S. Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells. Solid State Commun. 2009, 149, 1853–1855. [Google Scholar] [CrossRef]
- Biebersdorf, A.; Dietmuller, R.; Susha, A.S.; Rogach, A.L.; Poznyak, S.K.; Talapin, D.V.; Weller, H.; Klar, T.A.; Feldmann, J. Semiconductor nanocrystals photosensitize C60 crystals. Nano Lett. 2006, 6, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Sheeney-Haj-Khia, L.; Basnar, B.; Willner, I. Efficient generation of photocurrents by using CdS/Carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed. 2005, 44, 78–83. [Google Scholar] [CrossRef]
- Koleilat, G.I.; Levina, L.; Shukla, H.; Myrskog, S.H.; Hinds, S.; Pattantyus-Abraham, A.G.; Sargent, E.H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2008, 2, 833–840. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
McDowell, M.; Wright, A.E.; Hammer, N.I. Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties. Materials 2010, 3, 614-637. https://doi.org/10.3390/ma3010614
McDowell M, Wright AE, Hammer NI. Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties. Materials. 2010; 3(1):614-637. https://doi.org/10.3390/ma3010614
Chicago/Turabian StyleMcDowell, Matthew, Ashley E. Wright, and Nathan I. Hammer. 2010. "Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties" Materials 3, no. 1: 614-637. https://doi.org/10.3390/ma3010614
APA StyleMcDowell, M., Wright, A. E., & Hammer, N. I. (2010). Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties. Materials, 3(1), 614-637. https://doi.org/10.3390/ma3010614