Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels
Abstract
:1. Introduction
2. Sol-Gel Synthesis
3. Influence of Synthesis Conditions on Nanoporous Structure of Silicate Aerogels
3.1. Type of initial materials
3.2. Effect of pH
3.3. Effect of catalyst
3.4. Effect of precursor concentration
3.5. Effect of water content
3.6. Effect of solvent
3.7. Effect of modifying agents
3.8. Addition of polymer
3.9. Incorporation of metal ions
3.9.1. Incorporation of alkaline and alkaline earth metal ions
3.9.2. Incorporation of aluminum ions
3.9.3. Incorporation of transition metal ions
Aerogels | Precursors | Specific surface area (m2 g-1) | Average pore diameter (nm) | Reference |
---|---|---|---|---|
Li2O–SiO2 | Li silicate + TEOS | 300 | 20–30 | [156] |
MgO–SiO2 | Mg(NO3)2 + TEOS | 200–340; 520 | 10–15 | [162,164] |
5% MgO | Mg(NO3)2 + TEOS | 200 | 10 | [162,164] |
10% MgO | 242 | 15 | ||
CaO–SiO2 | Ca(NO3)2 + TEOS | 30–260 | 10–50 | [167,168] |
0% CaO | Ca(NO3)2 + TEOS | 1000 | ~30 | [167,168] |
34% CaO | 260 | > 30 | ||
44% CaO | 53 | ~30 | ||
66% CaO | 33 | < 10 | ||
0% CaO | Ca(NO3)2 + TEOS | 1280 | ~3 | [133] |
10% CaO | + 20% PDMS | 780 | ~3 | |
20% CaO | 600 | ~11 | ||
Al2O3–SiO2 | AlX3 + TEOS | 10–1050 | 5–15 | [98] |
50% Al2O3 | Al(NO3)3 + TEOS | 630 | 12 | [98] |
Al(OiPr)3 + TEOS | 820 | 9 | ||
Al(OOCCH3)2(OH) | 84 | 5 | ||
Aln + TEOS + PDMS | 340 | 10 | [98] | |
0% Al2O3 | Boehmite sol + TEOS | 740 | 66 | [171] |
5% Al2O3 | 800 | 65 | ||
15% Al2O3 | 420 | 53 | ||
25% Al2O3 | 270 | 50 | ||
1% Al2O3 | Al(sOBu)3 + TEOS + Ethyl acetoacetate | 630–720 | 15–20 | [172] |
TiO2–SiO2 | Ti(OR)4 + Si(OR)4 | 400–700 | 10–30 | T1, T2 |
0% TiO2 | Ti(OisoPr)4 + TEOS | 895 | 92 | T1 |
5% TiO2 | 685 | 136 | ||
10% TiO2 | 620 | 152 | ||
20% TiO2 | 400 | 176 | ||
Ti(OiPr)4 + TEOS + TMCS | 540–640 | 40–110 | T1 | |
0% TiO2 | Ti(OisoPr)4 + TMOS | 750 | 6–30 | T6 |
10% TiO2 | 1080 | 11 | ||
20% TiO2 | 896 | 13 | ||
50% TiO2 | 700 | 11 | ||
V2O5–SiO2 | 200–1000 | 10–100 | ||
10% V2O5 | VOTIP / V(acac)3 + TEOS | 840 | 9 | [208,209] |
20% V2O5 | 600 | 13 | ||
30% V2O5 | 430 | 7 | ||
0% V2O5 | V(acac)3 + TEOS | 1070 | 93 | [216] |
5% V2O5 | 860 | 60 | ||
10% V2O5 | 260 | 42 | ||
20% V2O5 | 680 | 50 | ||
ZrO2–SiO2 | Zr(OPr)4 + TEOS | 100–500 | 10–100 | [220,221,222] |
9% ZrO2 | Zr(OPr)4 + TEOS | 460 | [220] | |
20% ZrO2 | Zr(OPr)4 + TMOS | 300 | ||
50% ZrO2 | 220 | [221,222] | ||
75% ZrO2 | 150 | |||
Impregnated | 93 | |||
Precipated | 98 | |||
Fe2O3–SiO2 | Fe(NO3)3 + TMOS | 400–600 | 20–30 | [234] |
83% Fe | FeCl3 + TEOS | 400 | 29 | [232] |
67% Fe | 430 | 28 | ||
50% Fe | 390 | 18 | ||
NiO–SiO2 | Ni nitrate + TEOS | 600–900 | 2–5 | [228] |
4. Conclusions
References and Notes
- Fricke, J.; Emmerling, A. Aerogels-preparation, Properties, Applications: Chemistry, Spectroscopy and Applications of Sol–Gel Glasses; Reisfeld, R., Jorgensen, C.K., Eds.; Springer: Berlin, Germany, 1992; pp. 38–81. [Google Scholar]
- Hrubesh, L.W. Aerogels: the world’s lightest solids. Chem. Ind. 1990, 17, 824–827. [Google Scholar]
- Fricke, J.; Gross, J. Aerogel Manufacture, Structure, Properties, and Applications: Chemical Processing of Ceramics; Lee, B.I., Pope, E.J.A., Eds.; Marcel Dekker: New York, NY, USA, 1994; pp. 311–319. [Google Scholar]
- Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillostson, T. Aerogel commercialization: technology, markets and costs. J. Non-Cryst. Solids 1995, 186, 372–379. [Google Scholar] [CrossRef]
- Prakash, S.S.; Brinker, C.J.; Hurd, A.J.; Rao, S.M. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 1995, 374, 439–443. [Google Scholar] [CrossRef]
- Gibiat, V.; Lefeuvre, O.; Woignier, T.; Pelous, J.; Phalippou, J. Acoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids 1995, 186, 244–255. [Google Scholar] [CrossRef]
- Herrmann, G.; Iden, R.; Mielke, M.; Teich, F.; Zeigler, B. On the way to commercial production of silica aerogel. J. Non-Cryst. Solids 1995, 186, 380–387. [Google Scholar] [CrossRef]
- Teishner, S.J. On Some Applications of Aerogels: Aerogels; Fricke, J., Ed.; Springer-Verlag: Berlin, Germany, 1986; pp. 232–238. [Google Scholar]
- Tsou, P. Silica aerogel captures cosmic dust intact. J. Non-Cryst. Solids 1995, 186, 415–427. [Google Scholar] [CrossRef]
- Haranath, D.; Pajonk, G.M.; Wagh, P.B.; Rao, A.V. Effect of sol-gel processing parameters on thermal properties of silica aerogels. Mater. Chem. Phys. 1997, 49, 129–134. [Google Scholar] [CrossRef]
- Hirashima, H.; Kojima, C.; Imai, H. Application of alumina aerogels as catalysts. J. Sol-Gel Sci. Techn. 1997, 8, 843–846. [Google Scholar]
- Deng, Z.; Wang, J.; Wu, A.; Shen, J.; Zhou, B. High strength SiO2 aerogel insulation. J. Non-Cryst. Solids 1998, 225, 101–104. [Google Scholar] [CrossRef]
- Rao, A.V.; Haranath, D.; Pajonk, G.M.; Wagh, P.B. Optimization of supercritical drying parameters for transparent silica aerogel window applications. Mater. Sci. Technol. 1998, 14, 1194–1199. [Google Scholar] [CrossRef]
- Schwertfeger, F.; Frank, D.; Schmidt, M. Hydrophobic water glass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 1998, 225, 24–29. [Google Scholar] [CrossRef]
- Rao, A.P.; Rao, A.V.; Pajonk, G.M. Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents. J. Sol–Gel Sci. Technol. 2005, 36, 285–292. [Google Scholar] [CrossRef]
- Akimov, Y.K. Fields of application of aerogels (Review). Instrum. Exp. Tech. 2003, 46, 287–299. [Google Scholar] [CrossRef]
- Schaefer, D.W.; Keefer, K.D. Structure of random porous materials: Silica aerogel. Phys. Rev. Lett. 1986, 56, 2199–2202. [Google Scholar] [CrossRef] [PubMed]
- Mulder, C.A.M.; Van Lierop, J.G. Preparation, Densification and Characterization of Autoclave Dried SiO2 Gels: Aerogels; Fricke, J., Ed.; Springer-Verlag: Berlin, Germany, 1986; pp. 68–75. [Google Scholar]
- Kocon, L.; Despetis, F.; Phalippou, J. Ultralow density silica aerogels by alcohol supercritical drying. J. Non-Cryst. Solids 1998, 225, 96–100. [Google Scholar] [CrossRef]
- Pajonk, G.M. Transparent silica aerogels. J. Non-Cryst. Solids 1998, 225, 307–314. [Google Scholar] [CrossRef]
- Guyer, R.L.; Koshland, D.E. Diamond: Glittering prize for materials science. Science. 1990, 250, 1640–1643. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Schwertfeger, F. Applications for silica aerogel products. J. Non-Cryst. Solids 1998, 225, 364–368. [Google Scholar] [CrossRef]
- Schneider, M.; Baiker, A. Aerogels in catalysis. Cat. Rev. Sci. Eng. 1995, 37, 515–556. [Google Scholar] [CrossRef]
- Brinker, C.J.; Sherer, G.W. Sol-Gel Science; Acad. Press: Boston, MA, USA, 1990; pp. 97–228. [Google Scholar]
- Schubert, U.; Hüsing, N. Synthesis of Inorganic Materials; Wiley-VCH: Weinheim, Germany, 2005; pp. 192–221. [Google Scholar]
- Rao, A.V.; Pajonk, G.M.; Parvathy, N.N. Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J. Mater. Sci. 1994, 29, 1807–1817. [Google Scholar] [CrossRef]
- Tewari, P.H.; Hunt, A. J. Process for Forming Transparent Aerogel Insulating Arrays. US Pat. 4,610,863, 1986. [Google Scholar]
- Tewari, P.H.; Hunt, A.J.; Lofftus, K.D. Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 1985, 3, 363–367. [Google Scholar] [CrossRef]
- Schmidt, M.; Schwertfeger, F. Applications for silica aerogel products. J. Non-Cryst. Solids 1998, 225, 364–368. [Google Scholar] [CrossRef]
- Schwerfeger, F.; Frank, D.; Schmidt, M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 1998, 225, 24–29. [Google Scholar] [CrossRef]
- Burns, G.T.; Deng, Q.; Field, R.J.R.; Hahn, C.W.; Lentz, A. Convenient synthesis of silylated silica xerogels. Chem. Mater. 1999, 11, 1275–1284. [Google Scholar] [CrossRef]
- Moner-Girona, M.; Martinez, E.; Roig, A.; Esteve, J.; Molins, E. Mechanical properties of silica aerogels measured by microindentation: Influence of sol-gel processing parameters and carbon addition. J. Non-Cryst. Phys. 2001, 285, 244–250. [Google Scholar]
- Cha, Y.C.; Kim, C.E.; Lee, S.; Hwang, H.J.; Moon, J.W.; Han, I.S.; Woo, S.K. Synthesis of silica aerogel thin film from waterglass. Solid State Phenom. 2007, 124–126, 671–674. [Google Scholar] [CrossRef]
- Lee, S.; Cha, Y.C.; Hwang, H.J.; Moon, J.W.; Han, I. The effect of pH on the physicochemical properties of silica aerogels prepared by ambient pressure drying method. Mater. Lett. 2007, 61, 3130–3133. [Google Scholar] [CrossRef]
- Kim, C.E.; Yoon, J.S.; Hwang, H.J. Synthesis of nanoporous silica aerogel by ambient pressure drying. J. Sol-Gel Sci. Technol. 2009, 49, 47–52. [Google Scholar] [CrossRef]
- Rao, P.; Rao, A.V.; Gurav, J.L. Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor. J. Porous Mater. 2008, 15, 507–512. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.Y.; Yoo, K.P. Low-density, hydrophobic aerogels. J. Non-Cryst. Solids 1995, 186, 18–22. [Google Scholar] [CrossRef]
- Davis, P.J.; Brinker, C.J.; Smith, D.M. Pore structure evolution in silica gel during aging/drying I. Temporal and thermal aging. J. Non-Cryst. Solids 1992, 142, 189–196. [Google Scholar] [CrossRef]
- Davis, P.J.; Brinker, C.J.; Smith, D.M.; Assink, R. Pore structure evolution in silica gel during aging/drying II. Effect of pore fluids. J. Non-Cryst. Solids 1992, 142, 197–207. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Haereid, S. Preparation of transparent, monolithic silica xerogels with low density. J. Sol–Gel Sci. Technol. 1994, 2, 903–906. [Google Scholar] [CrossRef]
- Haereid, S.; Einarsrud, M.A.; Scherrer, G.W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions. J. Sol–Gel Sci. Technol. 1994, 3, 199–204. [Google Scholar] [CrossRef]
- Haereid, S.; Dahle, M.; Lima, S.; Einarsrud, M.A. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J. Non-Cryst. Solids 1995, 186, 96–103. [Google Scholar] [CrossRef]
- Haereid, S.; Nilsen, E.; Einarsrud, M.A. Properties of silica gels aged in TEOS. J. Non-Cryst. Solids 1996, 204, 228–234. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Nilsen, E. Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 1998, 226, 122–128. [Google Scholar] [CrossRef]
- Pierre, A.C.; Pajonk, G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002, 102, 4243–4266. [Google Scholar] [CrossRef] [PubMed]
- Shlyakhtin, O.A; Tretyakov, Y.D. Recent progress in cryochemical synthesis of oxide materials. J. Mater. Chem. 1999, 9, 19–24. [Google Scholar] [CrossRef]
- Pajonk, G.M. Catalytic aerogels. Catalysis Today. 1997, 319–337. [Google Scholar] [CrossRef]
- Scherer, G.W. Theory of drying. J. Am. Ceram. Soc. 2005, 73, 3–14. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A Review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Proc. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Livage, J.; Sanchez, C. Sol-gel chemistry. J. Non-Cryst. Solids 1992, 145, 11–19. [Google Scholar] [CrossRef]
- Uhlmann, D.R.; Zelinski, B.J.; Silverman, L.; Warner, S.B.; Fabes, B.D.; Doyle, W.F. Kinetic Processes in Sol-Gel Processing: Science of Ceramic Processing; Hench, L.L., Ulrich, D.R., Eds.; Wiley: New York, NY, USA, 1986; pp. 173–186. [Google Scholar]
- Mackenzie, J.D. Applications of the Sol-Gel Method: Some Aspects of Initial Processing: Science of Ceramic Processing; Hench, L.L., Ulrich, D.R., Eds.; Wiley: New York, NY, USA, 1986; pp. 113–122. [Google Scholar]
- Prassas, M.; Phalippou, J.; Zarzycki, J. Sintering of Monolithic Silica Aerogel: Science of Ceramic Processing; Hench, L.L., Ulrich, D.R., Eds.; Wiley: New York, NY, USA, 1986; pp. 156–167. [Google Scholar]
- Teichner, S.J. Aerogels of Inorganic Oxides: Aerogels; Fricke, J., Ed.; Springer Verlag: Heidelberg, Germany, 1986; pp. 22–25. [Google Scholar]
- Zarzycki, J.; Wognier, T. Aerogels; Fricke, J., Ed.; Springer Verlag: Berlin, Germany, 1986; pp. 42–48. [Google Scholar]
- Pajonk, G.M. Drying methods preserving the textural properties of gels. Rev. Phys. Appl. 1989, 24, C4–13. [Google Scholar]
- Chang, S.Y.; Ring, T.A. Map of gel times for three phase region tetraethoxysislane, ethanol and water. J. Non-Cryst. Solids 1992, 147–148, 56–61. [Google Scholar] [CrossRef]
- Pajonk, G.M.; Repelin-Lacroix, M.; Abouarnadasse, S.; Chaouki, J.; Klvana, D. From sol-gel to aerogels and cryogels. J. Non-Cryst. Solids 1990, 121, 66–67. [Google Scholar]
- Walendziewski, J.; Stolarski, M.; Steininger, M.; Pniak, B. Physicochemical properties and hydrogenation activity of nickel-alumina aerogels. React. Kinet. Catal. Lett. 1996, 58, 85–90. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Nilsen, E.; Rigacci, A.; Pajonk, G.M.; Buathier, S.; Valette, D.; Durant, M.; Chevalier, B.; Nitz, P.; Ehrburger-Dolle, F. Strengthening of silica gels and aerogels by washing and aging processes. J. Non-Cryst. Solids 2001, 285, 1–7. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, A.P.; Kulkarni, M.M. Influence of gel aging and Na2SiO3/H2O molar ratio on monolithicity and physical properties of water–glass-based aerogels dried at atmospheric pressure. J. Non-Cryst. Solids 2004, 350, 224–229. [Google Scholar] [CrossRef]
- Zhang, Z.; Tanigami, Y.; Terai, R.; Wakabayashi, H. Preparation of transparent methyl-modified silica gel. US Pat. 5858280, 1999. [Google Scholar]
- Wagh, P.B.; Begag, R.; Pajonk, G.M.; Rao, A.V.; Haranath, D. Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 1999, 57, 214–218. [Google Scholar] [CrossRef]
- Rao, A.V.; Kalesh, R.R. Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci. Technol. Adv. Mater. 2003, 4, 509–515. [Google Scholar] [CrossRef]
- Innocenzi, P.; Kozuka, H.; Sakka, S. Preparation of coating films doped with gold metal particles from methyltriethoxysilane-tetraethoxysilane solutions. J. Sol-Gel Sci. Technol. 1994, 1, 305–318. [Google Scholar] [CrossRef]
- Rao, A.V.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interf. Sci. 2006, 300, 279–285. [Google Scholar] [CrossRef]
- Harreld, J.H.; Ebina, T.; Tsubo, N.; Stucky, G. Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions. J. Non-Cryst. Solids 2002, 298, 241–251. [Google Scholar] [CrossRef]
- Cao, B.; Zhu, C. Sol-gel derived self-supporting film. J. Non-Cryst. Solids 1999, 246, 34–38. [Google Scholar] [CrossRef]
- Rao, A.V.; Wagh, P.B.; Haranath, D.; Risbud, P.P.; Kumbhare, S.D. Influence of temperature on the physical properties of TEOS silica xerogels. Ceram. Int. 1999, 25, 505–509. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J.; Wei, J.; Shen, J.; Zhou, B.; Chen, L. Physical properties of silica aerogels prepared with polyethoxydisiloxanes. J. Sol-Gel Sci. Technol. 2000, 19, 677–680. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Nilsen, E.; Rigacci, A.; Pajonk, G.M.; Buathier, S.; Valette, D.; Durant, M.; Chevalier, B.; Nitz, P.; Ehrburger-Dolle, F. Strengthening of silica gels and aerogels by washing and aging processes. J. Non-Cryst. Solids 2001, 285, 1–7. [Google Scholar] [CrossRef]
- Chao, X.; Jun, S.; Bin, Z. Ultralow density silica aerogels prepared with PEDS. J. Non-Cryst. Solids 2009, 355, 492–495. [Google Scholar] [CrossRef]
- Zhou, B.; Shen, J.; Yuehua, W.; Wu, G.; Ni, X. Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater. Sci. Eng. C. 2007, 27, 1291–1294. [Google Scholar] [CrossRef]
- Hwang, S.W.; Jung, H.H.; Hyun, S.H.; Ahn, Y.S. Effective preparation of crack-free silica aerogels via ambient drying. J. Sol-Gel Sci. Technol. 2007, 41, 139–146. [Google Scholar] [CrossRef]
- Chambers, R.C.; Jones, W.E.; Harury, Y.; Webber, S.E.; Fox, M.A. Influence of steric effect on the kinetics of ethyltrimethoxysilane hydrolysis in a fast sol-gel system. Chem. Mater. 1993, 5, 1481–1486. [Google Scholar] [CrossRef]
- Brinker, C.J.; Keefer, K.D.; Schaefer, D.W.; Ashley, C.S. Sol-gel transition in simple silicates. J. Non-Cryst. Solids 1982, 48, 47–64. [Google Scholar] [CrossRef]
- Rahmani, A.; Jund, P.; Benoit, C.R.; Jullien, R. Numerical study of the dynamic properties of silica aerogels. J. Phys.: Condens. Matter 2001, 13, 5413–5426. [Google Scholar] [CrossRef]
- Stolarski, M.; Walendziewski, J.; Steininger, M.; Pniak, B. Synthesis and characteristic of silica aerogels. Appl. Catal. A: Gen. 1999, 177, 139–148. [Google Scholar] [CrossRef]
- Matsoukas, T.; Gulari, E. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J. Colloid Interface Sci. 1988, 124, 252–261. [Google Scholar] [CrossRef]
- Tillotson, T.M.; Hrubesh, L.W. Transparent ultralow density silica aerogels prepared by a two-step process. J. Non-Cryst. Solids 1992, 145, 44–50. [Google Scholar] [CrossRef]
- Gommes, C.J.; Goderis, B.; Pirard, J.P.; Blacher, S. Branching, aggregation, and phase separation during the gelation of tetraethoxysilane. J. Non-Cryst. Solids 2007, 353, 2495–2499. [Google Scholar] [CrossRef]
- Yamane, N.; Inoue, S.; Yasumori, A. Sol-gel transition in the hydrolysis of silicon methoxide. J. Non-Cryst. Solids 1984, 63, 13–21. [Google Scholar] [CrossRef]
- Brinker, C.J. Sol-Gel Processing of Silica: Colloidal Silica: Fundamentals and Applications; Bergna, H.E., Roberts, W.O., Eds.; CRC Press, Taylor and Francis: New York, NY, USA, 2006; pp. 615–633. [Google Scholar]
- Brinker, C.J.; Keefer, K.D.; Schaefer, D.W.; Assink, R.A.; Kay, B.D.; Ashley, C.S. Sol-gel transition in simple silicates II. J. Non-Cryst. Solids 1982, 63, 45–59. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Hishikura, H.; Iura, J.; Kokubu, Y. Monolithic dried gels and silica glass prepared by the sol-gel process. J. Non-Cryst. Solids 1984, 63, 61–69. [Google Scholar] [CrossRef]
- Tamon, H.; Sone, T.; Okazaki, M. Control of mesoporous structure of silica aerogel prepared from TMOS. J. Colloid Inter. Sci. 1997, 188, 162–167. [Google Scholar] [CrossRef]
- Wagh, P.B.; Ingale, S.V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceram. Int. 2002, 28, 43–50. [Google Scholar] [CrossRef]
- Kirkbir, F.; Murata, H.; Meyers, D.; Chaudhuri, S.R.; Sarkkar, A. Drying and sintering of sol-gel derived large SiO2 monoliths. J. Sol-Gel Sci. Technol. 1996, 6, 203–217. [Google Scholar] [CrossRef]
- Rao, A.V.; Parvathy, N.N. Effect of gel parameters on monolithicity and density of silica aerogels. J. Mater. Sci. 1993, 28, 3021–3026. [Google Scholar] [CrossRef]
- Watton, S.P.; Taylor, C.M.; Kloster, G.M.; Bowman, S.C. Coordination Complexes in Sol-Gel Silicon Materials: Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003; pp. 333–420. [Google Scholar]
- Meador, M.A.B.; Capadona, L.A.; McCorkle, L.; Papadopoulos, D.S.; Leventis, N. Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: Isocyanate cross-linked silica aerogels. Chem. Mater. 2007, 19, 2247–2260. [Google Scholar] [CrossRef]
- Rahaman, M.N. Ceramic Processing; Taylor & Francis: New York, NY, USA, 2006; pp. 209–215. [Google Scholar]
- Anderson, M.; Sawyer, P.S.; Rieker, T. Surfactant-templated Silica Aerogels. Micropor. Mesopor. Mater. 1998, 20, 53–65. [Google Scholar] [CrossRef]
- Rao, A.P.; Rao, A.V.; Pajonk, G.M.; Shewale, P.M. Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J. Mater. Sci. 2007, 42, 8418–8425. [Google Scholar] [CrossRef]
- Ranjit, K.T.; Martyanov, I.; Demydov, D.; Uma, S.; Rodrigues, S.; Klabunde, K.J. A review of the chemical manipulation of nanomaterials using solvents: Gelation dependent structures. J. Sol-Gel Sci. Technol. 2006, 40, 335–339. [Google Scholar] [CrossRef]
- Jones, S.M. A method for producing gradient density aerogel. J. Sol-Gel Sci. Technol. 2007, 44, 255–258. [Google Scholar] [CrossRef]
- Sinkó, K.; Hüsing, N.; Goerigk, G.; Peterlik, H. Nanostructure of gel-derived aluminosilicate materials. Langmuir 2008, 24, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Hüsing, N.; Schubert, U.; Misof, K.; Fratzl, P. Formation and Structure of Porous Gel Networks from Si(OMe)4 in the Presence of A(CH2)nSi(OR)3. Chem. Mater. 1998, 10, 3024–3032. [Google Scholar] [CrossRef]
- Zarzycki, J. Sonogels. Heterog. Chem. Rev. 1994, 1, 243–253. [Google Scholar]
- Suslick, K.S. Sonocatalysis: Handbook of Heterogeneous Catalysis; Ertl, G., Knözinger, H., Weitkamp, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1997; pp. 1350–1357. [Google Scholar]
- Blanco, E.; Esquivias, L.; Litran, R.; Pinero, M.; Ramirez-del-Solar, M.; Rosa-Fox, N. Sonogels and derived materials. Appl. Organometal. Chem. 1999, 13, 399–418. [Google Scholar] [CrossRef]
- Judenstein, P.; Titman, J.; Stamm, M.; Schmidt, H. Investigation of ion-conducting ormolytes: Structure-property relationships. Chem. Mater. 1994, 6, 127–134. [Google Scholar] [CrossRef]
- Nakanishi, K.; Minakuchi, H.; Soga, N.; Tanaka, N. Structure design of double-pore silica and its application to HPLC. J. Sol-Gel. Sci. Technol. 1998, 13, 163–169. [Google Scholar] [CrossRef]
- Martin, J.; Hosticka, B.; Lattimer, C.; Norris, P.M. Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J. Non-Cryst. Solids 2001, 288, 222–229. [Google Scholar] [CrossRef]
- Meador, M.A.B.; Capadona, L.A.; McCorkle, L.; Papadopoulos, D.S.; Leventis, N. Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: Isocyanate cross-linked silica aerogels. Chem. Mater. 2007, 19, 2247–2260. [Google Scholar] [CrossRef]
- Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.H.; Rawashdeh, A.M.M. Nanoengineering strong silica aerogels. Nano Lett. 2002, 2, 957–960. [Google Scholar] [CrossRef]
- Zhang, G.H.; Dass, A.; Rawashdeh, A.M.M.; Thomas, J.; Counsil, J. A.; Sotiriou-Leventis, C.; Fabrizio, E.F.; Ilhan, F.; Vassilaras, P.; Scheiman, D.A.; McCorkle, L.; Palczer, A.; Johnston, J.C.; Meador, M.A.; Leventis, N. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. [Google Scholar] [CrossRef]
- Mansur, H.S.; Vasconcellos, W.L.; Lenza, R.S.; Orefice, R.L.; Reis, E.F.; Lobato, Z.P. Sol–gel silica based networks with controlled chemical properties. J. Non-Cryst. Solids 2000, 273, 109–115. [Google Scholar] [CrossRef]
- Alie, C.; Pirard, R.; Pirard, J.P. Study of the morphology of porous silica materials. Stud. Surf. Sci. Catal. 2000, 128, 177–186. [Google Scholar]
- Rodriguez, S.A.; Colon, L.A. Investigations of a sol-gel derived stationary phase for open tubular capillary electrochromatography. Anal. Chim. Acta 1999, 397, 207–215. [Google Scholar] [CrossRef]
- Schmidt, P.W. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Cryst. 1991, 24, 414–435. [Google Scholar] [CrossRef]
- Zerda, T.W.; Hoang, G. Effect of solvents on the hydrolysis reaction of tetramethyl orthosilicate. Chem. Mater. 1990, 2, 372–376. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Liu, J. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 2006, 60, 3718–3722. [Google Scholar] [CrossRef]
- Rao, A.V.; Nilsen, E.; Einarsrud, M.A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. J. Non-Cryst. Solids 2001, 296, 165–171. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Kim, Y.H.; Ahn, Y.S.; Yeo, J.G. Rapid synthesis of water-glass based aerogels by in situ surface modification of the hydrogels. Appl. Surf. Sci. 2007, 253, 3231–3236. [Google Scholar] [CrossRef]
- Hwang, S.W.; Kim, T.Y.; Hyun, S.H. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels. J. Colloid Interface Sci. 2008, 322, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Shewale, P.M.; Rao, A.V.; Gurav, J.L.; Rao, A.P. Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor. J. Porous Mater. 2009, 16, 101–108. [Google Scholar] [CrossRef]
- Rao, A.P.; Rao, A.V. Improvement in optical transmission of the ambient pressure dried hydrophobic nanostructured silica aerogels with mixed silylating agents. J. Non-Cryst. Solids 2009, 355, 2260–2271. [Google Scholar] [CrossRef]
- Fan, H.; Bentley, H.R.; Kathan, K.R.; Clem, P.; Lu, Y.; Brinker, C.J. Self-assembled aerogel-like low dielectric constant films. J. Non-Cryst. Solids 2001, 285, 79–83. [Google Scholar] [CrossRef]
- Park, J.H.; Oh, C.; Shin, I.S.; Moon, S. K.; Oh, S.G. Preparation of hollow silica microspheres in W/O emulsions with polymers. J. Colloid Interface Sci. 2003, 266, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Doshi, D.A.; Gibaud, A.; Liu, N.; Sturmayr, D.; Malanoski, A.P.; Dunphy, D.R.; Chen, H.; Narayanan, S.; MacPhee, A.; Wang, J.; Reed, S.T.; Hurd, A.J.; van Swol, F.; Brinker, C.J. In situ X-ray scattering study of continuous silica−surfactant self-assembly during steady-state dip coating. J. Phys. Chem. B 2003, 107, 7683–7688. [Google Scholar] [CrossRef]
- Liu, M.; Gan, L.; Pang, Y.; Xu, Z.; Hao, Z.; Chen, L. Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf. A 2008, 317, 490–495. [Google Scholar] [CrossRef]
- Hüsing, N.; Hartmann, S. Inorganic–Organic Hybrid Porous Materials: Hybrid Nanocomposites for Nanotechnology; Springer: New York, NY, USA, 2009; pp. 1–41. [Google Scholar]
- Jiménez-Morales, A.; Galván, J.C.; Aranda, P.; Ruiz-Hitzky, E. Microwave assisted blending-intercalation of ion-conductor polymers into layered silicates; in organic/inorganic hybrid materials. Mat. Res. Soc. Symp. Proc. 1998, 519, 211–216. [Google Scholar] [CrossRef]
- Alonso, B.; Maquet, J.; Viana, B.; Sanchez, C. Synthesis and characterization of hybrid materials obtained through hydrolysis of alkoxysilanes and vanadium alkoxides. Mat. Res. Soc. Symp. Proc. 1998, 519, 337–343. [Google Scholar] [CrossRef]
- Guo, L.; Lee, J.H.; Beaucage, G. Structural analysis of polydimethylsiloxane (PDMS) modified silica xerogels. J. Non-Cryst. Solids 1999, 243, 61–69. [Google Scholar] [CrossRef]
- Kramer, S.J.; Rubio-Alonso, F.; Mackenzie, J.D. Organically modified silicate aerogels, aeromosils. Mater. Res. Soc.Symp. Proc. 1996, 435, 295–300. [Google Scholar] [CrossRef]
- Brankova, T.; Bekiari, V.; Lianos, P. Photoluminescence from sol−gel organic/inorganic hybrid gels obtained through carboxylic acid solvolysis. Chem. Mater. 2003, 15, 1855–1859. [Google Scholar] [CrossRef]
- Kubo, M.; Takashima, S.; Tsura, K.; Hayakawa, S.; Ohtsuki, C.; Osaka, A. Surface modification of polymer with graftinig and coating of silane hybrids and their bioactivity. Mat. Res. Soc. Symp. Proc. 1999, 576, 377–382. [Google Scholar] [CrossRef]
- Asif, K.M.; Sarwar, M.I.; Ahmad, M. Preparation and properties of PVC-silica composites using different catalysts via sol-gel process. Mat. Res. Soc. Symp. Proc. 1999, 576, 351–356. [Google Scholar] [CrossRef]
- Hajji, P.; David, L.; Gerard, J.F.; Kaddami, H.; Pascault, J.P.; Vigier, G. Synthesis-morphology-mechanical properties relationships of polymer-silica nanocomposite hybrid materials. Mat. Res. Soc. Symp. Proc. 1999, 576, 357–362. [Google Scholar] [CrossRef]
- Lai, M.; Joshi, M.; Kumar, D.N.; Friend, C.S.; Winiarz, J.; Assefa, T.; Kim, K.; Prasad, P.N. Inorganic-organic hybrid materials for photonics. Mat. Res. Soc. Symp. Proc. 1998, 519, 217–225. [Google Scholar] [CrossRef]
- Hasegawa, I. The cubeoctameric silicate anion: formation and application to porous material synthesis. Mat. Res. Soc. Symp. Proc. 1998, 519, 3–14. [Google Scholar] [CrossRef]
- De la Rosa-Fox, N.; Morales-Florez, V.; Toledo-Fernandez, J.A.; Pinero, M.; Esquivias, L.; Keiderling, U. SANS study of hybrid silica aerogels under ‘‘in situ’’ uniaxial compression. J. Sol-Gel Sci. Technol. 2008, 45, 245–250. [Google Scholar] [CrossRef]
- Salinas, A.J.; Vallet-Regi, M.; Toledo-Fernandez, J.A.; Mendoza-Serna, R.; Pinero, M.; Esquivias, L.; Ramıirez-Castellanos, J.; Gonzalez-Calbet, J.M. Nanostructure and bioactivity of hybrid aerogels. Chem. Mater. 2009, 21, 41–47. [Google Scholar]
- Sinkó, K.; Fél, K.; Zrínyi, M. Preparation possibilities of Al- and Si-containing hybrid systems. Polym. Adv. Technol. 2003, 14, 776–783. [Google Scholar]
- Toledo-Fernandez, J.A.; Mendoza-Serna, R.; Santos, A.; Pinero, M.; de la Rosa-Fox, N.; Esquivias, L. Improvement of the bioactivity of organic-inorganic hybrid aerogels/wollastonite composites with TiO2. J. Sol-Gel Sci. Technol. 2008, 45, 261–267. [Google Scholar] [CrossRef]
- Schaefer, D.W.; Beaucage, G.; Loy, D.A.; Shea, K.J.; Lin, J.S. Structure of arylene-bridged polysilsesquioxane xerogels and aerogels. Chem. Mater. 2004, 16, 1402–1410. [Google Scholar] [CrossRef]
- Loy, D.A.; Shea, K.J. Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem. Rev. 1995, 95, 1431–1442. [Google Scholar] [CrossRef]
- Loy, D.A.; Beach, J.V.; Baugher, B.M.; Assink, R.A.; Shea, K.J.; Tran, J.; Small, J.H. Dialkylene carbonate-bridged polysilsesquioxanes. Hybrid organic-inorganic sol-gels with a thermally labile bridging group. Chem. Mater. 1999, 11, 3333–3341. [Google Scholar]
- Shea, K.J.; Loy, D.A. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic−inorganic materials. Chem. Mater. 2001, 13, 3306–3319. [Google Scholar]
- Loy, D.A.; Rahimian, K. Building hybrid organic-inorganic materials using silsesquioxanes. In Handbook of Hybrid Organic-Inorganic Materials; American Scientific Publishers: Los Angeles, CA, USA, 2003; Volume 1, pp. 126–163. [Google Scholar]
- Nahar-Borchert, S.; Kroke, E.; Riedel, R.; Boury, B.; Corriu, R.J.P. Synthesis and characterization of alkylene-bridged silsesquicarbodiimide hybrid xerogels. J. Organomet. Chem. 2003, 686, 127–133. [Google Scholar] [CrossRef]
- Shea, K.J.; Moreau, J.E.; Loy, D.A.; Corriu, R.J.P.; Boury, B. Functional Hybrids Based on Bridged Silsesquioxanes: Hybrid Functional Materials; Wiley: New York, NY, USA, 2004; pp. 50–85. [Google Scholar]
- Shea, K.J.; Loy, D.A.; Corriu, R.J.P.; Boury, B. Bridged polysilsesquioxanes. In Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials: Functional Hybrid Materials; Gómez-Romero, P., Sanchez, C., Eds.; Wiley-InterScience: Hoboken, NJ, USA, 2005; pp. 50–85. [Google Scholar]
- Zhao, L.; Vaupel, M.; Loy, D.A.; Shea, K.J. Photoresponsive hybrid materials: Synthesis and characterization of coumarin-dimer-bridged polysilsesquioxanes. Chem. Mater. 2008, 20, 1870–1876. [Google Scholar] [CrossRef]
- McInal, M.D.; Scott, J.; Mercier, L.; Kooyman, P.I. Super-microporous organic-integrated silica prepared by non-electrostatic surfactant assembly. Chem. Commun. 2001, 2282–2283. [Google Scholar] [CrossRef]
- Matos, J.R.; Kruk, M.; Mercuri, L.P.; Jaroniec, M.; Asefa, T.; Coombs, N.; Ozin, G.A.; Kamiyama, T.; Terasaki, D. Periodic mesoporous organosilica with large cagelike pores. Chem. Mater. 2002, 14, 1903–1905. [Google Scholar] [CrossRef]
- Brinker, C.J.; Sehgal, R.; Hietala, S.L.; Deshpande, R.; Smith, D.M.; Lop, D.; Ashley, C. S. Sol-gel strategies for controlled porosity inorganic materials. J. Membrane Sci. 1994, 94, 85–102. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mark, J.E. Polyimide−ceramic hybrid composites by the sol−gel route. Chem. Mater. 2001, 13, 3320–3330. [Google Scholar] [CrossRef]
- Zhou, Y.; Schattka, J.H.; Antonietti, M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol−gel nanocasting technique. Nano Lett. 2004, 4, 477–481. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–342. [Google Scholar] [CrossRef]
- Hall, J.L.; Dean, W.E.; Pacofsky, E.A. Metal chelates of alkanol-substituted amines. J. Am. Chem. Soc. 1960, 82, 3303–3308. [Google Scholar] [CrossRef]
- Katayama, S.; Yamadab, N.; Awano, M. Preparation of alkaline-earth metal silicates from gels and their NOx-adsorption behavior. J. Eur. Ceram. Soc. 2004, 24, 421–425. [Google Scholar] [CrossRef]
- Katayama, S.; Yamadab, N.; Awano, M. Preparation of silicates using HSi(OC2H5)3 and their NOx-adsorption behavior. J. Sol-Gel Sci. Technol. 2004, 32, 311–316. [Google Scholar] [CrossRef]
- Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases: Their Catalytic Properties; Elsevier: Amsterdam, The Netherlands, 1989; pp. 143–149. [Google Scholar]
- Katayama, S.; Iwata, K.; Kubo, Y.; Yamada, N. Solid acid-base control of inorganic/organic hybrids by inorganic components for molecule-selectivity. J. Sol-Gel Sci. Technol. 2003, 26, 397–401. [Google Scholar] [CrossRef]
- Saravanapavan, P.; Hench, L.L. Mesoporous calcium silicate glasses. I. Synthesis. J. Non-Cryst. Solids 2003, 318, 1–13. [Google Scholar] [CrossRef]
- Saravanapavan, P.; Jones, J.R.; Verrier, S.; Beilby, R.; Shirtliff, V.J.; Hench, L.L.; Polak, J.M. Binary CaO-SiO(2) gel-glasses for biomedical applications. Biomed. Mater. Eng. 2004, 14, 467–486. [Google Scholar] [PubMed]
- Hayashi, T.; Saito, H. Preparation of CaO–SiO2 glasses by the gel method. J. Mater. Sci. 1980, 15, 1971–1977. [Google Scholar] [CrossRef]
- Katayama, S.; Yamada, N.; Awano, M. Preparation of silicate foams using HSi(OC2H5)3 and their NOx adsorption behavior. J. Eur. Ceram. Soc. 2004, 24, 1957–1960. [Google Scholar] [CrossRef]
- Bansal, N.P. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions. J. Amer. Ceram. Soc. 1988, 71, 666–672. [Google Scholar] [CrossRef]
- Kazakos, A.; Komarneni, S.; Roy, R. Preparation and densifi- cation of forsterite (Mg2SiO4) by nanocomposite sol-gel processing. Mater. Lett. 1990, 9, 405–409. [Google Scholar] [CrossRef]
- Rutiser, C.; Komarneni, S.; Roy, R. Composite aerogels of silica and minerals of different morphologies. Mater. Lett. 1994, 19, 221–224. [Google Scholar] [CrossRef]
- Komarneni, S.; Rutiser, C. Single-phase and diphasic aerogels and xerogels of mullite: Preparation and characterization. J. Eur. Ceram. Soc. 1996, 16, 142–147. [Google Scholar] [CrossRef]
- Lopez, T.; Llanos, M.E.; Navarrete, J.; Schifter, I.; Salas, P.; Gomez, R. Preparation of magnesia-silica oxides: Effect of Mg/Si ratio and sulfate on acidity. J. Sol–Gel Sci. Technol. 1997, 8, 321–325. [Google Scholar]
- Llanos, M.E.; Lopez, T.; Gomez, R. Determination of the surface heterogeneity of MgO−SiO2 sol−gel mixed oxides by means of CO2 and ammonia thermodesorption. Langmuir 1997, 13, 974–978. [Google Scholar] [CrossRef]
- Mitchell, M.B.D.; Jackson, D.; James, P.F. Preparation and characterization of forsterite (Mg2SiO4) aerogels. J. Non-Cryst. Solids 1998, 225, 125–129. [Google Scholar] [CrossRef]
- Mitchell, M.B.D.; Jackson, D.; James, P.F. Low-density forsterite (Mg2SiO4) powders prepared from modified alkoxides. J. Sol-Gel Sci. Technol. 2003, 26, 777–782. [Google Scholar] [CrossRef]
- Santos, A.; Ajbary, M.; Morales-Flórez, V.; Kherbeche, A.; Pinero, M.; Esquivias, L. Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation. J. Hazard. Mater. 2009, 168, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Zhang, X.; Yu, F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. J. Therm. Sci. 2009, 18, 142–149. [Google Scholar] [CrossRef]
- Lee, O.J.; Lee, K.H.; Yim, T.J.; Kim, S.Y.; Yoo, K.P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 2002, 298, 287–292. [Google Scholar] [CrossRef]
- Aravind, P.R.; Mukundan, P.; Pillai, P.K.; Warrier, K.G.K. Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Micropor. Mesopor. Mater. 2006, 96, 14–20. [Google Scholar] [CrossRef]
- Hernandez, C.; Pierre, A.C. Influence of the sol−gel acidic synthesis conditions on the porous texture and acidity of SiO2−Al2O3 catalysts with a low Al proportion. Langmuir 2000, 16, 530–536. [Google Scholar] [CrossRef]
- Ryoo, R.; Jun, S.; Kim, J.M. Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation. J. Chem. Soc. Chem. Commun. 1997, 2225–2226. [Google Scholar] [CrossRef]
- Dunphy, D.R.; Singer, S.; Cook, A.W.; Smarsly, B.; Doshi, D.A.; Brinker, C.J. Aqueous stability of mesoporous silica films doped or grafted with aluminum oxide. Langmuir 2003, 19, 10403–10408. [Google Scholar] [CrossRef]
- Knez, Z.; Novak, Z. Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels. J. Chem. Eng. Data. 2001, 46, 858–860. [Google Scholar] [CrossRef]
- Heinrich, T.; Raether, R.; Sportmann, O.; Fricke, J. SAXS measurements of the condensation in mullite precursors. J. Appl. Cryst. 1991, 24, 788–793. [Google Scholar] [CrossRef]
- Heinrich, T.; Raether, F. Structural characterisation and phase development of sol–gel derived mullite and its precursors. J. Non-Cryst. Solids 1992, 147/148, 152–156. [Google Scholar] [CrossRef]
- Heinrich, T.; Raether, F.; Marsmann, H. Growth and structure of single phase mullite gels from chelated aluminum alkoxides and alkoxysilanes. J. Non-Cryst. Solids 1994, 168, 14–22. [Google Scholar] [CrossRef]
- Pouxviel, J.C.; Boilot, J.P.; Dauger, A.; Wright, A. Gelation study of alumino-silicates by small-angle neutron scattering. J. Non-Cryst. Solids 1988, 103, 331–340. [Google Scholar] [CrossRef]
- Boilot, J.P.; Pouxviel, J.C.; Dauger, A.; Wright, A. Better Ceramics Through Chemistry III MRS Symposium; Brinker, C.J., Clark, D.E., Ulrich, D.R., Eds.; Materials Research Society: Pittsburgh, PA, USA, 1998; pp. 22–25. [Google Scholar]
- Sinkó, K.; Mezei, R. Preparation effects on sol-gel derived aluminosilicate gels. J. Non-Cryst. Solids 1998, 231, 1–9. [Google Scholar] [CrossRef]
- Da Silva, M.G.F. Study of the structural insertion of Al3+ in the Al2O3–SiO2 and Nd2O3–Al2O3–SiO2 glass systems. J. Non-Cryst. Sol. 2006, 352, 807–820. [Google Scholar] [CrossRef]
- Pierre, A.C.; Elaloui, E.; Pajonk, G.M. Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir 1998, 14, 66–73. [Google Scholar] [CrossRef]
- Sinkó, K.; Torma, V.; Kovács, A. SAXS investigation of porous nanostructures. J. Non-Cryst. Solids 2008, 354, 5466–5474. [Google Scholar] [CrossRef]
- Tamon, H.; Sone, T.; Mikami, M.; Okazaki, M. Preparation and characterization of silica–titania and silica–alumina aerogels. J. Colloid Interface Sci. 1997, 188, 493–500. [Google Scholar] [CrossRef]
- Trombetta, M.; Busca, G.; Willey, R.J. Characterization of silica-containing aluminum hydroxide and oxide aerogels. J. Colloid Interface Sci. 1997, 190, 416–426. [Google Scholar] [CrossRef]
- Gash, A.E.; Tillotson, T.M.; Satcher, J.H., Jr.; Hrubesh, L.W.; Simpson, R.L. New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids 2001, 285, 22–28. [Google Scholar] [CrossRef]
- Best, M.F.; Condrate, R.A. A raman study of TiO2-SiO2 glasses prepared by sol-gel processes. J. Mater. Sci. Lett. 1985, 4, 994–998. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Bao, F.; Cheng, Y. Phase separation in yttrium silicate glass prepared by the sol–gel method. J. Non-Cryst. Solids 2005, 351, 3114–3120. [Google Scholar] [CrossRef]
- Yoda, S.; Tasaka, Y.; Uchida, K.; Kawai, A.; Ohshima, S.; Ikazaki, F. Effects of supercritical impregnation conditions on the properties of silica–titania aerogels. J. Non-Cryst. Solids 2001, 285, 8–12. [Google Scholar] [CrossRef]
- Yoda, S.; Ohtake, K.; Takebayashi, Y.; Sugeta, T.; Sako, T.; Sato, T. Preparation of SiO2-TiO2 aerogels using supercritical impregnation. J. Sol-Gel Sci. Technol. 2000, 19, 719–723. [Google Scholar] [CrossRef]
- Yoda, S.; Otake, K.; Takebayashi, Y.; Sugeta, T.; Sato, T. Effects of supercritical impregnation conditions on the properties of silica–titania aerogels. J. Non-Cryst. Solids 2001, 285, 8–12. [Google Scholar] [CrossRef]
- Yoda, S.; Ohtake, K.; Takebayashi, Y.; Sugeta, T.; Sako, T.; Sato, T. Preparation of titania-impregnated silica aerogels and their application to removal of benzene in air. J. Mater. Chem. 2000, 10, 2151–2156. [Google Scholar] [CrossRef]
- Kim, W.; Hong, I.K. Synthesis of monolithic titania-silica composite aerogels with supercritical drying process. J. Ind. Eng. Chem. 2003, 9, 728–734. [Google Scholar]
- Cao, S.; Yeung, K.L.; Yue, P.L. Synthesis of monolithic titania-silica aerogel for PCO reactions. Stud. Surf. Sci. Catal. 2006, 159, 465–468. [Google Scholar]
- Cao, S.; Yeung, K.L.; Yue, P.L. An investigation of trichloroethylene photocatalytic oxidation on mesoporous titania-silica aerogel catalysts. Appl. Catal. B Environ. 2007, 76, 64–72. [Google Scholar] [CrossRef]
- Yao, N.; Cao, S.; Yeung, K.L. Mesoporous TiO2–SiO2 aerogels with hierarchal pore structures. Micropor. Mesopor. Mater. 2009, 117, 570–579. [Google Scholar] [CrossRef]
- Dutoit, D.C.M.; Schneider, M.; Baiker, A. Titania-silica mixed oxides : I. Influence of sol-gel and drying conditions on structural properties. J. Catal. 1995, 153, 165–176. [Google Scholar]
- Aravind, P.R.; Shajesh, P.; Mukundan, P.; Warrier, K.G.K. Silica–titania aerogel monoliths with large pore volume and surface area by ambient pressure drying. J. Sol-Gel Sci. Technol. 2009, 52, 328–334. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, J.; Zhang, Y.; Weng, Z.; Zhang, Z.; Zhou, B.; Shen, J.; Cheng, L. Preparation and photocatalytic activity of TiO2-SiO2 binary aerogels. Nano-Struct. Mater. 1999, 11, 1313–1318. [Google Scholar] [CrossRef]
- Xu, Z.; Gan, L.; Jia, Y.; Hao, Z.; Liu, M.; Chen, L. Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. J. Sol-Gel Sci. Technol. 2007, 41, 203–207. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, J.; Lü, X.; Jiang, D. Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol–gel method at ambient pressure. Colloids Surf. A: Physicochem. Eng. Aspects 2009, 342, 97–101. [Google Scholar] [CrossRef]
- Cao, S.L.; Yao, N.; Yeung, K.L. Synthesis of freestanding silica and titania–silica aerogels with ordered and disordered mesopores. J. Sol–Gel Sci. Technol. 2008, 46, 323–339. [Google Scholar] [CrossRef]
- Fernandez, J.A.T.; Mendoza-Serna, R.; Santos, A.; Pinero, M.; de la Rosa-Fox, N.; Esquivias, L. Improvement of the bioactivity of organic-inorganic hybrid aerogels/wollastonite composites with TiO2. J. Sol-Gel Sci. Technol. 2008, 45, 261–267. [Google Scholar] [CrossRef]
- Malinowska, B.; Walendziewski, J.; Robert, D.; Weber, J.V.; Stolarski, M. The study of photocatalytic activities of titania and titania–silica aerogels. Appl. Catal. B: Environ. 2003, 46, 441–451. [Google Scholar] [CrossRef]
- Evans, D.L. Glass structure: The bridge between the molten and crystalline states. J. Non-Cryst. Solids 1982, 52, 115–128. [Google Scholar] [CrossRef]
- Emili, M.; Incoccia, L.; Mobilio, S.; Fagherazzi, G.; Guglielmi, M. Structural investigations of TiO2−SiO2 glassy and glass-ceramic materials prepared by the sol-gel method. J. Non-Cryst. Solids 1985, 74, 129–146. [Google Scholar] [CrossRef]
- Mekki, A.; Khattak, G.D.; Holland, D.; Chinkhota, M.; Wenger, L.E. Structure and magnetic properties of vanadium–sodium silicate glasses. J. Non-Cryst. Solids 2003, 318, 193–201. [Google Scholar] [CrossRef]
- Dutoit, D.C.M.; Reiche, M.A.; Baiker, A. Vanadia–silica aerogels. Structure and catalytic properties in selective reductionof NO by NH3. Appl. Catal. B: Environ. 1997, 13, 275–288. [Google Scholar]
- Klett, U.; Fricke, J. Vanadia–silica aerogels from vanadylacetylacetonate. J. Non-Cryst. Solids 1998, 225, 188–191. [Google Scholar] [CrossRef]
- Barbosa, G.N.; Brunello, C.A.; Graeff, C.F.O.; Oliveira, H.P. Preparation and properties of homogeneous V2O5–SiO2 xerogel composite based on interpenetrating polymer network. J. Solid State Chem. 2004, 177, 960–965. [Google Scholar] [CrossRef]
- Devi, P.S.; Ganguli, D. Vanadia–silica xerogels: Optical and structural properties. J. Non-Cryst. Solids 2004, 336, 128–134. [Google Scholar] [CrossRef]
- Dutoit, D.C.M.; Schneider, M.; Fabrizioli, P.; Baiker, A. Vanadia-silica mixed oxides. Influence of vanadia precursor, drying method and calcination temperature on structural and chemical properties. J. Mat. Chem. 1997, 7, 271–278. [Google Scholar]
- Barbosa, G.N.; Brunello, C.A.; Graeff, C.F.O.; Oliveira, H.P. Preparation and properties of homogeneous V2O5–SiO2 xerogel composite based on interpenetrating polymer network. J. Solid State Chem. 2004, 177, 960–965. [Google Scholar] [CrossRef]
- Barbosa, G.N.; Oliveira, H.P. Synthesis and characterization of V2O5–SiO2 xerogel composites prepared by base catalysed sol–gel method. J. Non-Cryst. Solids 2006, 352, 3009–3014. [Google Scholar] [CrossRef]
- Moussa, N.; Ghorbel, A.; Grange, P. Vanadia-silica catalysts prepared by sol–gel method: Application for epoxidation reaction. J. Sol-Gel Sci. Technol. 2005, 33, 127–132. [Google Scholar] [CrossRef]
- Reiche, M.A.; Ortelli, E.; Baiker, A. Vanadia grafted on TiO2–SiO2, TiO2 and SiO2 aerogels: Structural properties and catalytic behaviour in selective reduction of NO by NH3. Appl. Catal. B: Environ. 1999, 23, 187–203. [Google Scholar] [CrossRef]
- Wang, C.B.; Deo, G.; Wachs, I.E. Characterization of vanadia sites in V-silicalite, vanadia-silica cogel, and silica-supported vanadia catalysts: X-ray powder diffraction, Raman spectroscopy, solid-state 51V NMR, Temperature-programmed reduction, and methanol oxidation studies. J. Catal. 1998, 178, 640–648. [Google Scholar] [CrossRef]
- Solsona, B.; Blasco, T.; López Nieto, J.M.; Peña, M.L.; Rey, F.; Vidal-Moya, A. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J. Catal. 2001, 203, 443–452. [Google Scholar] [CrossRef]
- Anderson, J.A.; Fergusson, C.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels. J. Catal. 2000, 192, 344–354. [Google Scholar] [CrossRef]
- Anderson, J.A.; Fergusson, C. Surface and bulk properties of silica-zirconia mixed-oxides: Acid vs base catalysed condensation. J. Non-Cryst. Solids 1999, 246, 177–188. [Google Scholar] [CrossRef]
- Anderson, J.A.; Fergusson, C. Estimation of degree of mixing in silica containing mixed oxides from spin-lattice relaxation measurements. J. Mater. Sci. Lett. 1999, 18, 1075–1076. [Google Scholar] [CrossRef]
- Blacher, S.; Pirard, R.; Pirard, J.P.; Sahouli, B.; Brouers, F. On the texture characterization of mixed SiO2-ZrO2 aerogels using the nitrogen adsorption-desorption isotherms: Classical and fractal methods. Langmuir 1997, 13, 1145–1149. [Google Scholar] [CrossRef]
- Nogami, M.; Nagasaka, K. Effect of water and catalyst on hydrolysis-condensation of Zr−O−Si alkoxides. J. Non-Cryt. Solids 1989, 109, 79–84. [Google Scholar]
- Gao, C.; Zhao, Y.; Liu, D. Liquid phase hydrogenation of maleic anhydride over nickel catalyst supported on ZrO2–SiO2 composite aerogels. Catal. Lett. 2007, 118, 50–54. [Google Scholar] [CrossRef]
- Gao, X.; Fierro, J.L.G.; Wachs, I.E. Structural characteristics and catalytic properties of highly dispersed ZrO2/SiO2 and V2O5/ZrO2/SiO2 catalysts. Langmuir 1999, 15, 3169–3178. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, Y.; Zhang, Y.; Liu, D. Synthesis characterization and catalytic evaluation of Ni/ZrO2/SiO2 aerogels catalysts. J. Sol-Gel Sci. Technol. 2007, 44, 145–151. [Google Scholar] [CrossRef]
- Casula, M.F.; Corrias, A.; Paschina, G. Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials. J. Mater. Res. 2000, 15, 2187–2194. [Google Scholar] [CrossRef]
- Cao, W.; Hunt, A. Sol-gel processing using aminofunctional silanes. J. Mat. Res. Symp. Proc. 1994, 346, 631–636. [Google Scholar] [CrossRef]
- Khaddar-Zine, S.; Ghorbel, A.; Naccache, C. Characterization and catalytic properties of aerogel chromium oxide supported by alumina or silica. J. Sol-Gel Sci. Technol. 2000, 19, 637–641. [Google Scholar] [CrossRef]
- Huber, C.; Moller, K.; Bein, T. Reactivity of a trimethylstannyl molybdenum complex in mesoporous MCM-41. Chem. Commun. 1994, 2619–2620. [Google Scholar] [CrossRef]
- Clapsaddle, B.; Gash, A.; Satcher, J.; Simpson, R. Silicon oxide in an iron(III) oxide matrix: The sol–gel synthesis and characterization of Fe–Si mixed oxide nanocomposites that contain iron oxide as the major phase. J. Non-Cryst. Solids 2003, 331, 190–201. [Google Scholar] [CrossRef]
- Wang, C.; Ro, S. Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation. Appl. Catal. A: Gen. 2005, 285, 196–204. [Google Scholar] [CrossRef]
- Fabrizioli, P.; Bürgi, T.; Baiker, A. Environmental catalysis on iron oxide–silica aerogels: Selective oxidation of NH3 and reduction of NO by NH3. J. Catal. 2002, 206, 143–154. [Google Scholar] [CrossRef]
- Wang, C.T.; Willey, R.J. Oxidation of methanol over iron oxide based aerogels in supercritical CO2. J. Non-Cryst. Solids 1998, 225, 173–177. [Google Scholar] [CrossRef]
- Li, D.; Wu, D.; Wang, X.; Lu, L.; Yang, X. Rapid preparation of porous Fe2O3/SiO2 nanocomposites via an organic precursor. Mater. Res. Bull. 2001, 36, 2437–2442. [Google Scholar] [CrossRef]
- Gash, A.E.; Tillotson, T.M.; Satcher, J.H.; Poco, J.F.; Hrubesh, L.W.; Simpson, R.L. Use of epoxides in the sol−gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 2001, 13, 999–1007. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sinkó, K. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials 2010, 3, 704-740. https://doi.org/10.3390/ma3010704
Sinkó K. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials. 2010; 3(1):704-740. https://doi.org/10.3390/ma3010704
Chicago/Turabian StyleSinkó, Katalin. 2010. "Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels" Materials 3, no. 1: 704-740. https://doi.org/10.3390/ma3010704
APA StyleSinkó, K. (2010). Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials, 3(1), 704-740. https://doi.org/10.3390/ma3010704