Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
Abstract
:Nomenclature
1. Introduction
2. Second-Law Analyses
3. Kinetic Analyses
rate constant | k0, mol cm‑2 s‑1 | Ea, kJ mol‑1 |
---|---|---|
k1 | 0.0018 ± 0.0009 | 60.3 ± 3.3 |
k2 | 0.29 × 10−5 ± 0.083 × 10−5 | 15.0 ± 1.6 |
k3 | 0.0216 ± 0.0214 | 70.3 ± 8.4 |
4. Solar Reactor Technology
5. Life Cycle and Economic Analyses
6. Summary and Conclusions
Acknowledgements
References
- Fletcher, E.A.; Moen, R.L. Hydrogen and oxygen from water. Science 1977, 197, 1050–1056. [Google Scholar]
- Bilgen, E.; Ducarroir, M.; Foex, M.; Sibieude, F.; Trombe, F. Use of solar energy for direct and two-step water decomposition cycles. Int. J. Hydrogen Energ. 1977, 2, 251–257. [Google Scholar]
- Traynor, A.J.; Jensen, R.J. Direct solar reduction of CO2 to fuel: First prototype results. Ind. Eng. Chem. Res. 2002, 41, 1935–1939. [Google Scholar]
- Price, R.J.; Morse, D.A.; Hardy, S.L.; Fletcher, T.H. Modeling the direct solar conversion of CO2 to CO and O2. Ind. Eng. Chem. Res. 2004, 43, 2446–2453. [Google Scholar]
- Price, R.J.; Fletcher, T.H.; Jensen, R.J. Using computational fluid dynamics modeling to improve the performance of a solar CO2 converter. Ind. Eng. Chem. Res. 2007, 46, 1956–1967. [Google Scholar]
- Steinfeld, A. Solar thermochemical production of hydrogen—A review. Sol. Energy 2005, 78, 603–615. [Google Scholar]
- Perkins, C.; Weimer, A.W. Solar-thermal production of renewable hydrogen. AIChE J. 2009, 55, 286–293. [Google Scholar]
- Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006, 31, 2805–2822. [Google Scholar]
- Kodama, T. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog. Energ. Combust. 2003, 29, 567–597. [Google Scholar]
- Kodama, T.; Gokon, N. Thermochemical cycles for high-temperature solar hydrogen production. Coordin. Chem. Rev. 2007, 107, 4048–4077. [Google Scholar]
- Fletcher, E.A. Solarthermal processing: A review. J. Sol. Energy Eng. 2001, 123, 63–64. [Google Scholar]
- Inoue, M.; Hasegawa, N.; Uehara, R.; Gokon, N.; Kaneko, H.; Tamaura, Y. Solar hydrogen generation with H2O/ZnO/MnFe2O4 system. Sol. Energy 2004, 76, 309–315. [Google Scholar]
- Miller, J.E.; Allendorf, M.D.; Diver, R.B.; Evans, L.R.; Siegel, N.P.; Stuecker, J.N. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J. Mater. Sci. 2008, 43, 4714–4728. [Google Scholar]
- Chueh, W.C.; Haile, S.M. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem 2009, 2, 735–739. [Google Scholar]
- Steinfeld, A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrogen Energ. 2002, 27, 611–619. [Google Scholar]
- Gálvez, E.; Loutzenhiser, P.; Hischier, I.; Steinfeld, A. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis. Energ. Fuel. 2008, 22, 3544–3550. [Google Scholar]
- Palumbo, R.; Lédé, J.; Boutin, O.; Elorza-Ricart, E.; Steinfeld, A.; Möller, S.; Weidenkaff, A.; Fletcher, E.A.; Bielicki, J. The production of Zn from ZnO in a single step high temperature solar decomposition process I. The scientific framework for the process. Chem. Eng. Sci. 1998, 53, 2503–2518. [Google Scholar]
- Perkins, C.; Weimer, A.W. Likely near-term solar-thermal water splitting technologies. Int. J. Hydrogen Energ. 2004, 29, 1587–1599. [Google Scholar]
- Schunk, L.O.; Steinfeld, A. Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800–2100 K range. AIChE J. 2009, 55, 1497–1504. [Google Scholar]
- Weidenkaff, A.; Reller, A.W.; Wokaun, A.; Steinfeld, A. Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim. Acta 2000, 359, 69–75. [Google Scholar]
- Perkins, C.; Lichty, P.; Weimer, A.W. Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem. Eng. Sci. 2007, 62, 5952–5962. [Google Scholar]
- Möller, S.; Palumbo, R. Solar thermal decomposition kinetics of ZnO in the temperature range 1950–2400 K. Chem. Eng. Sci. 2001, 56, 4505–4515. [Google Scholar]
- Perkins, C.; Lichty, P.R.; Weimer, A. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int. J. Hydrogen Energ. 2008, 33, 499–510. [Google Scholar]
- Ernst, F.O.; Steinfeld, A.; Pratsinis, S.E. Hydrolysis rate of submicron Zn particles for solar H2 synthesis. Int. J. Hydrogen Energ. 2009, 34, 1166–1175. [Google Scholar]
- Funke, H.H.; Diaz, H.; Liang, X.; Carney, C.S.; Weimer, A.W.; Lib, P. Hydrogen generation by hydrolysis of zinc powder aerosol. Int. J. Hydrogen Energ. 2008, 33, 1127–1134. [Google Scholar]
- Chambon, M.; Abanades, S.; Flamant, G. Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders. Int. J. Hydrogen Energ. 2009, 34, 5326–5336. [Google Scholar]
- Lv, M.; Zhou, J.; Yang, W.; Cen, K. Thermogravimetric analysis of the hydrolysis of zinc particles. Int. J. Hydrogen Energ. 2010, 35, 2617–2621. [Google Scholar]
- Loutzenhiser, P.G.; Gálvez, M.E.; Hischier, I.; Stamatiou, A.; Frei, A.; Steinfeld, A. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions II: Kinetic analysis. Energ. Fuel. 2009, 23, 2832–2839. [Google Scholar]
- Stamatiou, A.; Loutzenhiser, P.G.; Steinfeld, A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem. Mater. 2010, 22, 851–859. [Google Scholar]
- Stamatiou, A.; Loutzenhiser, P.G.; Steinfeld, A. Solar syngas production from H2O and CO2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe3O4 redox reactions: Kinetic analysis. Energ. Fuel. 2010, 24, 2716–2722. [Google Scholar]
- Palumbo, R.; Keunecke, M.; Möller, S.; Steinfeld, A. Reflections on the design of solar thermal chemical reactors: Thoughts in transformation. Energy 2004, 29, 727–744. [Google Scholar]
- Steinfeld, A.; Palumbo, R. Solar thermochemical process technology. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: San Diego, CA, USA, 2001; Volume 15, pp. 237–256. [Google Scholar]
- Haueter, P.; Moeller, S.; Palumbo, R.; Steinfeld, A. The production of zinc by thermal dissociation of zinc oxide—Solar chemical reactor design. Sol. Energy 1999, 67, 161–167. [Google Scholar]
- Weidenkaff, A.; Reller, A.; Sibieude, F.; Wokaun, A.; Steinfeld, A. Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace. Chem. Mater. 2000, 12, 2175–2181. [Google Scholar]
- Elorza-Ricart, E.; Martin, P.Y.; Ferrer, M.; Lédé, J. Direct thermal splitting of ZnO followed by a quench. Experimental measurements of mass balances. J. Phys. IV France 1999, 9, 325–330. [Google Scholar]
- Elorza-Ricart, E.; Ferrer, M.; Lédé, J. Dissociation thermique directe de l’oxide de zinc par voie solaire. Entropie 2000, 228, 55–59. [Google Scholar]
- Lédé, J.; Boutin, O.; Elorza-Ricart, E.; Ferrer, M. Solar thermal splitting of zinc oxide. A review of some of the rate controlling factors. J. Sol. Energy Eng. 2001, 123, 91–97. [Google Scholar]
- Moeller, S.; Palumbo, R. The development of a solar chemical reactor for the direct thermal dissociation of zinc oxide. J. Sol. Energy Eng. 2001, 123, 83–90. [Google Scholar]
- Müller, R.; Haeberling, P.; Palumbo, R.D. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol. Energy 2006, 80, 500–511. [Google Scholar]
- Schunk, L.; Haeberling, P.; Wepf, S.; Wuillemin, D.; Meier, A.; Steinfeld, A. A solar receiver-reactor for the thermal dissociation of zinc oxide. J. Sol. Energy Eng. 2008, 130, 021009. [Google Scholar]
- Chambon, M.; Abanades, S.; Flamant, G. Design of a lab-scale rotary cavity-type solar reactor for continuous thermal dissociation of volatile oxides under reduced pressure. J. Sol. Energy Eng. 2010, 132, 021006. [Google Scholar]
- Perkins, C.; Weimer, A. Computational fluid dynamics simulation of a tubular aerosol reactor for solar thermal ZnO decomposition. J. Sol. Energy Eng. 2008, 129, 391–404. [Google Scholar]
- Abanades, S.; Charvin, P.; Flamant, G. Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides - Case study of zinc oxide dissociation. Chem. Eng. Sci. 2007, 62, 6323–6333. [Google Scholar]
- Melchior, T.; Perkins, C.; Weimer, A.W.; Steinfeld, A. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int. J. Therm. Sci. 2008, 47, 1496–1503. [Google Scholar]
- Dombrovsky, L.A.; Lipiński, W.; Steinfeld, A. A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. J. Quant. Spectrosc. Ra. 2007, 103, 601–610. [Google Scholar]
- Schunk, L.O.; Lipiński, W.; Steinfeld, A. Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation. AIChE J. 2009, 55, 1659–1666. [Google Scholar]
- Dombrovsky, L.A.; Schunk, L.; Lipiński, W.; Steinfeld, A. An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. Int. J. Heat Mass Tran. 2009, 52, 2444–2452. [Google Scholar]
- Müller, R.; Steinfeld, A. Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Sol. Energy 2007, 81, 1285–1294. [Google Scholar]
- Müller, R.; Lipiński, W.; Steinfeld, A. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl. Therm. Eng. 2008, 28, 524–531. [Google Scholar]
- Schunk, L.O.; Lipiński, W.; Steinfeld, A. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO–validation at 10 kW and scale-up to 1 MW. Chem. Eng. J. 2009, 150, 502–508. [Google Scholar]
- Lipiński, W.; Thommen, D.; Steinfeld, A. Unsteady radiative heat transfer within a suspension of ZnO particles undergoing thermal dissociation. Chem. Eng. Sci. 2006, 61, 7029–7035. [Google Scholar]
- Roine, A. Outokumpu HCS Chemistry 5.11. Outokumpu Research Oy, Pori, Finland. 2002. [Google Scholar]
- Weidenkaff, A.; Steinfeld, A.; Wokaun, A.; Eichler, B.; Reller, A. The direct solar thermal dissociation of ZnO: Condensation and crystallization of Zn in the presence of oxygen. Sol. Energy 1999, 65, 59–69. [Google Scholar]
- Fletcher, E.A. Solarthermal and solar quasi-electrolytic processing and separations: Zinc from Zinc Oxide as an example. Ind. Eng. Chem. Res. 1999, 38, 2275–2282. [Google Scholar]
- Keunecke, M.; Meier, A.; Palumbo, R. Solar thermal decomposition of zinc oxide—An initial investigation of the recombination reaction in the temperature range 1100–1250 K. Chem. Eng. Sci. 2004, 59, 2695–2704. [Google Scholar]
- Müller, R.; Steinfeld, A. H2O-splitting thermochemical cycle based on ZnO-Zn-redox—Quenching the effluents from the ZnO dissociation. Chem. Eng. Sci. 2008, 63, 217–227. [Google Scholar]
- Gstoehl, D.; Brambilla, A.; Schunk, L.O.; Steinfeld, A. A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO. J. Mater. Sci. 2008, 43, 4729–4736. [Google Scholar]
- Chambon, M.; Abanades, S.; Flamant, G. Solar thermal reduction of ZnO and SnO2—Characterization of the recombination reaction with O2. Chem. Eng. Sci. 2010, 65, 3671–3680. [Google Scholar]
- Alxneit, I. Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench—Model calculations. Sol. Energy 2008, 82, 959–964. [Google Scholar]
- Weiss, R.J.; Ly, H.C.; Wegner, K.; Pratsinis, S.E.; Steinfeld, A. H2 production by Zn hydrolysis in a hot-wall aerosol reactor. AIChE J. 2005, 51, 1966–1970. [Google Scholar]
- Wegner, K.; Ly, H.C.; Weiss, R.J.; Pratsinis, S.E.; Steinfeld, A. In situ formation and hydrolysis of Zn nanoparticles for H2 production by the two-step ZnO/Zn water-splitting thermochemical cycle. Int. J. Hydrogen Energ. 2006, 31, 55–61. [Google Scholar]
- Ernst, F.O.; Tricoli, A.; Pratsinis, S.E.; Steinfeld, A. Co-synthesis of H2 and ZnO by in-situ Zn aerosol formation and hydrolysis. AIChE J. 2006, 52, 3297–3303. [Google Scholar]
- Melchior, T.; Piatkowski, N.; Steinfeld, A. H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. Chem. Eng. Sci. 2009, 64, 1095–1101. [Google Scholar]
- Abu Hamed, T.; Venstrom, L.; Alshare, A.; Brülhart, M.; Davidson, J.H. Study of a quench device for simultaneous synthesis and hydrolysis of Zn nanoparticles: Modeling and experiments. J. Sol. Energy Eng. 2009, 131, 031018:1–031018:9. [Google Scholar]
- Loutzenhiser, P.G.; Gálvez, M.E.; Hischier, I.; Graf, A.; Steinfeld, A. CO2 splitting in an aerosol flow reactor via the two-step Zn/ZnO solar thermochemical cycle. Chem. Eng. Sci. 2010, 65, 1855–1864. [Google Scholar]
- Epstein, M.; Olalde, G.; Santén, S.; Steinfeld, A.; Wieckert, C. Towards the industrial solar carbothermal production of zinc. J. Sol. Energy Eng. 2008, 130, 014505:1–014505:4. [Google Scholar]
- Vishnevetsky, I.; Epstein, M. Production of hydrogen from solar zinc in steam atmosphere. Int. J. Hydrogen Energ. 2007, 32, 2791–2802. [Google Scholar]
- Berman, A.; Epstein, M. The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor. Int. J. Hydrogen Energ. 2000, 25, 957–967. [Google Scholar]
- Clarke, J.A.; Fray, D.J. Oxidation of zinc vapour by hydrogen-water vapour mixtures. T. I. Min. Metall. C 1979, C88, C161–C166. [Google Scholar]
- Loutzenhiser, P.G.; Barthel, F.; Stamatiou, A.; Steinfeld, A. CO2 reduction with Zn particles in a packed-bed reactor. AIChE J. 2010, in press. [Google Scholar]
- Felder, R.; Meier, A. Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation. J. Sol. Energy Eng. 2008, 130, 011017. [Google Scholar]
- Charvin, P.; Abanades, S.; Lemort, F.; Flamant, G. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energ. Con. Manage. 2008, 49, 1547–1556. [Google Scholar]
- Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int. J. Hydrogen Energ. 2008, 33, 4511–4519. [Google Scholar]
- Weimer, A.W.; Perkins, C.; Lichty, P.; Funke, H.; Zartmann, J.; Hirsch, D.; Bingham, C.; Lewandowski, A.; Haussener, S.; Steinfeld, A. Development of a Solar-thermal ZnO/Zn Water-splitting Thermochemical Cycle; Final Report (DE-PS36-03GO93007—Subcontract RF-05-SHGR-006); University of Colorado, Boulder: Colorado, CO, USA, 1 April 2009. [Google Scholar]
- Haltiwanger, J.F.; Davidson, J.H.; Wilson, E.J. Renewable hydrogen from the Zn/ZnO solar thermochemical cycle: A cost and policy analysis. J. Sol. Energy Eng. 2010, 132, 041011:1–041011:8. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Loutzenhiser, P.G.; Meier, A.; Steinfeld, A. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions. Materials 2010, 3, 4922-4938. https://doi.org/10.3390/ma3114922
Loutzenhiser PG, Meier A, Steinfeld A. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions. Materials. 2010; 3(11):4922-4938. https://doi.org/10.3390/ma3114922
Chicago/Turabian StyleLoutzenhiser, Peter G., Anton Meier, and Aldo Steinfeld. 2010. "Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions" Materials 3, no. 11: 4922-4938. https://doi.org/10.3390/ma3114922
APA StyleLoutzenhiser, P. G., Meier, A., & Steinfeld, A. (2010). Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions. Materials, 3(11), 4922-4938. https://doi.org/10.3390/ma3114922