Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor
Abstract
:1.Introduction
1.1. Three-Resistance Mass-Transfer Model
1.2. Effective Diffusivity
1.3. Mass-Transfer Resistances
2. Results and Discussion
2.1. XRD Patterns
2.2. SEM Images
2.3. Textural Analysis from N2 Isotherms
Sample | Mean size of crystallite of pure metal (nm) | ABET (m2/g) | BJH desorption pore size, mode (Å) |
---|---|---|---|
Ni/Al2O3 | 46.92 | 88.06 | 88.06 |
Cu/Al2O3 | 169.26 | 43.01 | 60.57 |
2.4. Kinetic Model in the Reaction Batch Reactor
Batch reactor | Parallel-plate reactor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Conditions | 24 h phthalonitrile conversion %. At T = 30, 40, 50 °C | ρBAo L/(mol-s)* | Ea J/mol | Thiele modulus ()** | k0 molA/gcat-s | EaP-PR J/mol | J/mol | J/mol-K | ||
T = 30 °C | T = 40 °C | T = 50 °C | ||||||||
Ni/Al2O3 | 4.7, 6.74,8.39 | 0.1658 | 24,615 | 1.015 × 10−2 | 1.403 × 10−2 | 1.800 × 10−2 | 3.187 × 10−2 | 21,475 | −10,374 | −59.47 |
Cu/Al2O3 | 2.19, 3.00, 3.79 | 3.784 × 10−2 | 22,939 | 4.523 × 10−3 | 6.046 × 10−3 | 7.695 × 10−3 | 3.300 × 10−3 | 13,604 | −7,190 | −60.54 |
2.5. Evaluation of the Mass-Transfer Effect
2.6. Kinetic Model in a Parallel-Plate Reactor
2.7. FT-IR Spectra and Elemental Analysis of Metallic Phthalocyanine Products
Wavenumber cm−1 | Assignment | |
---|---|---|
NiPc | CuPc | |
3250 | 3256 | N–H stretching |
3073 | 3050 | sp2 C–H stretching |
2965, 2870 | 2966, 2882 | sp3 C–H stretching |
2222 | 1981 | C–H overtones |
1655 | 1655 | N–H bending |
1613 | 1616 | benzene ring stretching |
1524 | 1513 | benzene in-plane deformation |
1361 | 1384 | C–O deformation |
1320* | 1320* | C=N–C at bridge sites |
1268* | 1269* | C=N–C at bridge sites |
1195* | 1196* | C–O stretching, O–H in-plane deformation |
1164* | – | Ni–N |
– | 1196*, 1133* | Cu–N |
1118* | 1118* | C–H in-plane deformation, benzene in-plane deformation |
1064 | – | C–H in-plane deformation |
– | 1103 | C–H in-plane deformation |
– | 766 | C–H non-planar vibrations (out-of-plane bending) |
731 | 723 | C–H nonplanar deformation |
3. Experimental Section
3.1. Preparation and Characterization of Supported Elemental Metals
3.2. Reaction Conditions in Batch and Parallel Reactors
4. Conclusions
Nomenclature
CAin | Concentration of A entering the channel (mol/dm3) |
CAout | Concentration of A exiting the channel (mol/dm3) |
CAs | Concentration of A on the washcoat surface (mol/dm3) |
CAw | Concentration of A in the washcoat bulk (mol/dm3) |
CAB | Bulk concentration of A in the fluid phase (mol/dm3) |
She | External Sherwood number |
Shi | Internal Sherwood number |
Thiele modulus | |
z | Channel height (dm) |
Ω1, Ω2 | Cross-sectional domain of the fluid phase and washcoat |
, | Effective transverse diffusion length for the fluid phase and washcoat (=AΩ/PΩ) (dm) |
Cs | Concentration at the surface (mol/dm3) |
R(Cs) | Reaction rate by reactor volume (mol/dm3-s) |
De | Effective diffusivity (dm2/s) |
R(C´) | Reaction rate by catalyst volume (mol/dm3-s) |
ε | Porosity of the catalyst in the tubular reactor |
τ | Tortuos ity of the pores of the catalyst |
Dp | Diffusion coefficient in the pores (m2/s) |
DK | Knudsen diffusion coefficient (m2/s) |
dp | Average pore diameter (m) |
DAB | Molecular diffusivity of specie A in solvent B (dm/s2) |
Association factor for the solvent, 1.5 for ethanol as a solvent. | |
M | Molar mass of the diffusing species (g/mol) |
T | Temperature of the diffusing species (K) |
MB | Molar mass of solvent (g/mol) |
μ | Solution viscosity (g/dm-s) |
νA | Molar volume of the solute in the normal boiling point (dm3/mol) |
Shapp | Experimentally observable Sherwood number |
L | Length/distance along the monolith channel |
Sh(L) | Sherwood number as function of length/distance along the monolith channel |
P | Transverse Peclet number |
Sc | Schmidt number (=ν/DB) |
υ | Kinematic viscosity (dm2/s) |
Dh | Channel hydraulic diameter (=4) |
She∞ | Asymptotic external Sherwood number |
Shi∞ | Asymptotic internal Sherwood number |
Λ | Constant for the calculation of the internal Sherwood number |
Concentration of A at time zero (mol/dm3) | |
x | Fraction conversion at time t |
gcat | Grams of catalyst |
νreactor | Volume of reactor (dm3) |
ρB | Bulk density of catalyst charged by reactor volume (gcat/νreactor) |
Ao | Pre-exponential constant in second-order kinetics (dm3/mol2-s) |
Ea | Activation energy in second-order kinetics (J/mol) |
t | Elapsed reaction time (s) |
Surface reaction rate (mol/s-gcat) | |
FAo | Molar flow of A (mol/s) |
Wcat | Weight of catalyst (g) |
k | Kinetic constant of surface reaction of Langmuir-Hinshelwood expression (dm3/s-gcat) |
KA | Equilibrium constant for adsorption of Langmuir-Hinshelwood expression (dm3/mol) |
k0 | Pre-exponential constant of Arrhenius expression for k (dm3/s-gcat) |
EaP-PR | Activation energy of Langmuir-Hinshelwood expression for parallel-plate reactor (J/mol) |
Change standard enthalpy of adsorption (J/mol) | |
Change standard entropy of adsorption (J/mol-K) | |
Standard total entropy of adsorption (J/mol-K) | |
Standard total entropy in the fluid phase (J/mol-K) |
Conflicts of Interest
References
- Garnovskii, A.D.; Kharisov, B.I. Direct Synthesis of Coordination and Organometallic Compounds; Elsevier Science: Amsterdam, The Netherland, 1999; pp. 73–134. [Google Scholar]
- Garnovskii, A.D.; Kharisov, B.I. Synthetic Coordination and Organometallic Chemistry; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Nemykin, V.N.; Kobayashi, N.; Mytsyk, V.M.; Volkov, S.V. The solid phase, room-temperature synthesis of metal-free and metallophthalocyanines, particularly of 2,3,9,10,16,17,23,24-octacyanophthalocyanines. Chem. Lett. 2000, 29, 546–547. [Google Scholar] [CrossRef]
- Tomoda, H.; Hibiya, E.; Nakamura, T.; Ito, H.; Saito, S. The participation of light in the formation of phthalocyanine. Chem. Lett. 1976, 9, 1003–1006. [Google Scholar]
- Kharisov, B.I.; Ortiz-Méndez, U.; Almaraz-Garza, J.L.; Almaguer-Rodríguez, J.R. Synthesis of non-substituted phthalocyanines by standard and non-standard techniques. Influence of solvent nature in phthalocyanine preparation at low temperature by UV-treatment of the reaction system. New J. Chem. 2005, 29, 686–692. [Google Scholar] [CrossRef]
- Leznoff, C.C.; D’Ascanio, A.M.; Yildiz, S.Z. Phthalocyanine formation using metals in primary alcohols at room temperature. J. Porphyrins Phthalocyanines 2000, 4, 103–111. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Coronado, C.E.C.; Cerda, K.P.C.; Méndez, U.O.; Jacobo, J.A.G.; Patlán, L.A.R. Use of elemental metals in different grade of activation for phthalocyanine preparation. Inorg. Chem. Commun. 2004, 7, 1269–1272. [Google Scholar] [CrossRef]
- Burns, T.P.; Rieke, R.D. Highly reactive magnesium and its application to organic syntheses. J. Org. Chem. 1987, 52, 3674–3680. [Google Scholar] [CrossRef]
- Rivera-De la Rosa, J.; Kharisov, B.I.; Medina, A.M.; Ortiz-Méndez, U.; Ibarra-Arvizú, A.K. Natural zeolites used as surface reaction for phthalocyanine synthesis. Mater. Manuf. Process. 2007, 22, 314–317. [Google Scholar] [CrossRef]
- Manley, J.B.; Anastas, P.T.; Cue, B.W., Jr. Frontiers in Green Chemistry: Meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod. 2008, 16, 743–750. [Google Scholar] [CrossRef]
- Hunger, K. Industrial dyes, Chemistry, Properties, Applications; Wiley-VCH: Weinheim, Germany, 2003; pp. 70–74. [Google Scholar]
- Kharisov, B.I.; De la Rosa, J.R.; Kharisova, O.V.; Garza, J.L.A.; Rodriguez, J.R.A.; Puente, L.I.; Mendez, U.O.; Arvizu, A.K.I. Use of elemental copper and nickel, supported in alumina, for preparation of non-substituted metal phthalocyaninates at low temperature. J. Coord. Chem. 2007, 3, 355–364. [Google Scholar]
- Joshi, S.Y.; Harold, M.P.; Balakotaiah, V. On the use of internal mass transfer coefficients in modeling of diffusion and reaction in catalytic monoliths. Chem. Eng. Sci. 2009, 64, 4976–4991. [Google Scholar] [CrossRef]
- Joshi, S.Y.; Harold, M.P.; Balakotaiah, V. Overall mass transfer coefficients and controlling regimes in catalytic monoliths. Chem. Eng. Sci. 2010, 65, 1729–1747. [Google Scholar] [CrossRef]
- Petersen, E.E. A general criterion for diffusion influenced chemical reactions in porous solids. Chem. Eng. Sci. 1965, 20, 587–591. [Google Scholar] [CrossRef]
- Zhang, F.; Hayes, R.E.; Koloczkowsky, S.T. A new technique to measure the effective diffusivity in a catalytic monolith washcoat. Chem. Eng. Res. Des. 2004, 82, 481–489. [Google Scholar] [CrossRef]
- Koloczkowsky, S.T. Measurement of effective diffusivity in catalyst-coated monoliths. Cat. Today 2003, 83, 85–95. [Google Scholar] [CrossRef]
- West, H.; Balakotaiah, V.; Jovanovic, Z. Experimental and theoretical investigation of the mass transfer controlled regime in catalytic monoliths. Cat. Today 2003, 88, 3–16. [Google Scholar] [CrossRef]
- Horiguchi, J.; Kobayashi, Y.; Kobayashi, S.; Yamazaki, Y.; Omata, K.; Nagao, D.; Konno, M.; Yamada, M. Mesoporous NiO–Al2O3 catalyst for high pressure partial oxidation of methane to syngas. Appl. Catal. A Gen. 2011, 392, 86–92. [Google Scholar] [CrossRef]
- El-Safty, S.A.; Kiyozumi, Y.; Hanaoka, T.; Mizukami, F. Heterogeneous catalytic activity of NiO-silica composites designated with cubic Pm3n cage nanostructures. Appl. Catal. B 2008, 82, 169–179. [Google Scholar] [CrossRef]
- Ishida, T.; Watanabe, H.; Takei, T.; Hamasaki, A.; Tokunaga, M.; Haruta, M. Metal oxide-catalyzed ammoxidation of alcohols to nitriles and promotion effect of gold nanoparticles for one-pot amide synthesis. Appl. Catal. A Gen. 2012, 425–426, 85–90. [Google Scholar] [CrossRef]
- Valente, J.S.; López-Salinas, E.; Bokhimi, X.; Flores, J.; Maubert, A.M.; Lima, E. Sulfated nanocapsular aluminas: Controlling their Brönsted and Lewis acidity. Phys. Chem. C. 2009, 113, 16476–16484. [Google Scholar] [CrossRef]
- De la Rosa, J.R.; Hernandez, A.; Rojas, F.; Ledezma, J.J. Sol–gel synthesis and characterization of novel La, Mn and Fe doped zirconia: Catalytic combustion activity of trichloroethylene. Colloids Surf. 2008, 315, 147–155. [Google Scholar] [CrossRef]
- Deraz, N.M. Magnetic behavior and physicochemical properties of Ni and NiO nano-particles. Curr. Appl. Phys. 2012, 12, 928–934. [Google Scholar] [CrossRef]
- Hanada, N.; Hirotoshi, E.; Ichikawa, T.; Akiba, E.; Fujii, H. SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5. J. Alloy Comp. 2008, 450, 395–399. [Google Scholar] [CrossRef]
- Hammond, C. The Basics of Crystallography and Diffraction; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Matsumura, Y.; Ishibe, H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol–gel method. Appl. Catal. B 2009, 86, 114–120. [Google Scholar] [CrossRef]
- Matsumura, Y.; Kuraoka, K.; Yazawa, T.; Haruta, M. Production of carbon monoxide and hydrogen by methanol decomposition over nickel dispersed on porous glass. Catal. Today 1998, 45, 191–196. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lucio-Ortiz, C.J.; de la Rosa, J.R.; Ramírez, A.H.; Heredia, J.A.D.; del Ángel, P.; Muñoz-Aguirre, S.; de León-Covián, L.M. Synthesis and characterization of Fe doped mesoporous Al2O3 by sol–gel method and its use in trichloroethylene combustion. J. Sol. Gel. Sci. Technol. 2011, 58, 374–384. [Google Scholar] [CrossRef]
- Aravindakshan, A. Copper phthalocyanine. PCI Mag. 2005, 1, 38–47. [Google Scholar]
- Treyball, R.E. Mass-Transfer Operations, 3rd ed.; Mc. Graw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Marchenko, A.; Koidan, H.; Hurieva, A.; Merkulov, A.; Pinchuk, A.; Yurchenko, A.; Rozhenko, A.B.; Jones, P.G.; Thönnessen, H.; Kostyuk, A. Cyclization of C-phosphorylated (PIII) arylformamidines to 3H-1,3-benzazaphospholes. Tetrahedron 2011, 67, 7748–7758. [Google Scholar] [CrossRef]
- Vannice, M.A.; Hyun, S.H.; Kalpakci, B.; Liauh, W.C. Entropies of adsorption in heterogeneous catalytic reactions. J. Catal. 1979, 56, 358–362. [Google Scholar] [CrossRef]
- Jung, J.S.; Lee, J.W.; Kim, K.; Cho, M.Y.; Jo, S.G.; Joo, J. Rectangular nanotubes of copper phthalocyanine: Application to a single nanotube transistor. Chem. Mater. 2010, 22, 2219–2225. [Google Scholar] [CrossRef]
- Achar, B.N.; Loesh, K.S. Studies on polyphormic modifications of copper phthalocyanine. J. Solid State Chem. 2004, 177, 1987–1993. [Google Scholar] [CrossRef]
- Topuz, B.B.; Gündüz, G.; Mavis, B.; Çolak, Ü. Synthesis and characterization of copper phthalocyanine and tetracarboxamide copper phthalocyanine deposited mica-titania pigments. Dyes Pigment. 2013, 96, 31–37. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sánchez-De la Torre, F.; De la Rosa, J.R.; Kharisov, B.I.; Lucio-Ortiz, C.J. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor. Materials 2013, 6, 4324-4344. https://doi.org/10.3390/ma6104324
Sánchez-De la Torre F, De la Rosa JR, Kharisov BI, Lucio-Ortiz CJ. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor. Materials. 2013; 6(10):4324-4344. https://doi.org/10.3390/ma6104324
Chicago/Turabian StyleSánchez-De la Torre, Fernando, Javier Rivera De la Rosa, Boris I. Kharisov, and Carlos J. Lucio-Ortiz. 2013. "Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor" Materials 6, no. 10: 4324-4344. https://doi.org/10.3390/ma6104324
APA StyleSánchez-De la Torre, F., De la Rosa, J. R., Kharisov, B. I., & Lucio-Ortiz, C. J. (2013). Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor. Materials, 6(10), 4324-4344. https://doi.org/10.3390/ma6104324