Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA
Abstract
:1. Introduction
2. Experimental Section
2.1. The Material under Study
2.1.1. Silicoalumophosphate SAPO-34
Sample | SBET (m2 g−1) | Sext (m2 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | Al:Si:P (mol mol−1) |
---|---|---|---|---|---|
SAPO-34-microporous | 531 | 0 | 0.285 | 0 | 45:12:43 |
SAPO-34-meso-1 | 517 | 98 | 0.203 | 0.456 | 45:15:40 |
SAPO-34-meso-2 | 501 | 184 | 0.153 | 0.364 | 48:14:38 |
- The purely microporous sample (SAPO-34-microporous) comprises cubical-shaped crystals with a mean edge size of about 20–40 μm. However, considerable variability could be observed throughout the sample, with crystals ranging from ~10 μm–60 μm. For our tests, nearly defect-free crystals of ~30 μm edge size were chosen.
- The carbon nanoparticle-templated sample (SAPO-34-meso-1) comprises cubical-shaped crystals with similar dimensions as those of SAPO-34-microporous. This sample contains spherical insertions of 20 nm diameter within the microporous framework, constituting a collection of disconnected mesopores. For our tests, crystals of ~30 μm edge size were chosen.
- The carbon nanotube-templated sample (SAPO-34-meso-2) comprises irregular particles with a wide range of sizes, ranging from about 10 to 100 μm. The microporous framework is traversed by a network of mesopores forming a spanning cluster. According to the technical specification of the template carbon nanotubes, Nanocyl NC 7000, the mesopore diameters and lengths are expected to exhibit a broad distribution around mean values of about 10 nm and 1.5 μm, respectively [16].
2.1.2. Zeolite LTA
2.2. IR Micro-Imaging
3. Results and Discussion
3.1. Probing Transient Sorption on SAPO-34-with-Propene
Transport parameter | Host material | Pressure step (mbar) | ||||
---|---|---|---|---|---|---|
0–3 | 3–8 | 8–15 | 15–30 | 30–0 | ||
D ×1014 (m2s−1) | SAPO-34-microporous | 0.266 | 0.197 | 0.140 | 0.234 | 0.339 |
SAPO-34-meso-1 | 0.301 | 0.177 | 0.181 | 0.264 | 0.120 | |
SAPO-34-meso-2 | 1.120 | 2.540 | 13.000 | 13.400 | 5.400 | |
α × 1010 (ms−1) | SAPO-34-microporous | 7.94 | 6.57 | 4.95 | 7.14 | 2.61 |
SAPO-34-meso-1 | 8.85 | 5.83 | 5.92 | 9.00 | 3.87 | |
SAPO-34-meso-2 | 26.10 | 56.80 | 330.00 | 333.00 | 150.00 |
3.2. Fast Uptake and Release on SAPO-34 with Ethane and Intentional Barrier Formation
Transport parameter | Host material | Pressure step (mbar) | |||
---|---|---|---|---|---|
0–117 | 0–200 | 0–200; pre-sat. with Benzene 85 mbar Run 1 | 0–200; pre-sat. with Benzene 85 mbar Run 2 | ||
D×1012 (m2 s−1) | SAPO-34-microporous | 4.95 | 4.85 | 0.756 | 0.918 |
SAPO-34-meso-2 | 83.8 | 96.6 | 5.320 | 5.55 | |
α×107 (m s−1) | SAPO-34-microporous | 5.67 | 73.2 | 2.13 | 2.52 |
SAPO-34-meso-2 | 104.84 | 125.5 | 66.9 | 70.6 |
3.3. Uptake and Release on Different LTA Specimens Using Ethane and Propane as Probe Molecules
4. Summary and Conclusions
Acknowledgments
References
- Laeri, F.; Schüth, F.; Simon, U.; Wark, M. Host-Guest-Systems Based on Nanoporous Crystals; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Ruthven, D.M.; Farooq, S.; Knaebel, K.S. Pressure Swing Adsorption; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Keil, F.J.; Krishna, R.; Coppens, M.O. Modeling of diffusion in zeolites. Rev. Chem. Eng. 2000, 16, 71–197. [Google Scholar]
- Heitjans, P.; Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models; Springer: Berlin, Germany, 2005. [Google Scholar]
- Chen, N.Y.; Degnan, T.F.; Smith, C.M. Molecular Transport and Reaction in Zeolites; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Kärger, J.; Ruthven, D.M.; Theodorou, D.N. Diffusion in Nanoporous Materials; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Groen, J.C.; Peffer, L.A.A.; Moulijn, J.A.; Perez-Ramirez, J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chem. Eur. J. 2005, 11, 4983–4994. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pinnavaia, T.J. MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Ed. 2006, 45, 7603–7606. [Google Scholar] [CrossRef]
- Choi, M.; Cho, H.S.; Srivastava, R.; Venkatesan, C.; Choi, D.H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718–723. [Google Scholar] [PubMed]
- Fan, W.; Snyder, M.A.; Kumar, S.; Lee, P.S.; Yoo, W.C.; McCormick, A.V.; Penn, R.L.; Stein, A.; Tsapatsis, M. Hierarchical nanofabrication of microporouse crystals with ordered mesoporosity. Nat. Mater. 2008, 7, 984–991. [Google Scholar] [CrossRef]
- Groen, J.C.; Zhu, W.; Brouwer, S.; Huynink, S.J.; Kapteijn, F.; Moulijn, J.A.; Perez-Ramirez, J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc. 2007, 129, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.H.; Johannsen, K.; Tornqvist, E.; Schmidt, I.; Topsoe, H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catal. Today 2007, 128, 117–122. [Google Scholar] [CrossRef]
- Meunier, F.C.; Verboekend, D.; Gilson, J.-P.; Groen, J.C.; Pérez-Ramírez, J. Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous Mesoporous Mater. 2012, 148, 115–121. [Google Scholar] [CrossRef]
- Tzoulaki, D.; Jentys, A.; Pérez-Ramírez, J.; Egeblad, K.; Lercher, J.A. On the location, strength and accessibility of Brønsted acid sites in hierarchical ZSM-5 particles. Catal. Today 2012, 198, 3–11. [Google Scholar] [CrossRef]
- Schmidt, F.; Paasch, S.; Brunner, E.; Kaskel, S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoprous Mater. 2012, 164, 214–221. [Google Scholar]
- Pérez-Ramírez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542. [Google Scholar] [CrossRef] [PubMed]
- Holm, M.S.; Taarning, E.; Egeblad, K.; Christensen, C.H. Catalysis with hierarchical zeolites. Catal. Today 2011, 168, 3–16. [Google Scholar]
- Valiullin, R.; Kärger, J.; Gläser, R. Correlating phase behaviour and diffusion in mesopores: Perspectives revealed by pulsed field gradient NMR. Phys. Chem. Chem. Phys. 2009, 11, 2833–2853. [Google Scholar] [PubMed]
- Woo, H.J.; Monson, P.A. Phase behavior and dynamics of fluids in mesoporous glasses. Phys. Rev. E 2003, 67, 041207:1–041207:17. [Google Scholar]
- Neimark, A.V.; Ravikovitch, P.I.; Vishnyakov, A. Inside the hysteresis loop: Multiplicity of internal states in confined fluids. Phys. Rev. E 2002, 65, 031505:1–031505:6. [Google Scholar] [CrossRef]
- Valiullin, R.; Naumov, S.; Galvosas, P.; Kärger, J.; Woo, H.J.; Porcheron, F.; Monson, P.A. Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 2006, 430, 965–968. [Google Scholar] [CrossRef]
- Binder, K.; Virnau, P.; Wilms, D.; Winkler, A. Spurious character of singularities associated with phase transitions in cylindrical pores. Eur. Phys. J. Spec. Top. 2011, 197, 227–241. [Google Scholar] [CrossRef]
- Futardo, F.; Galvosas, P.; Gonçalvezd, M.; Kopinke, F.D.; Naumov, S.; Rodriguez-Reinoso, F.; Roland, U.; Valiullin, R.; Kärger, J. Guest diffusion in interpenetrating networks of micro- and mesopores. J. Am. Chem. Soc. 2011, 133, 2437–2443. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J.; Valiullin, R. Mass Transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chem. Soc. Rev. 2013, 42, 4172–4197. [Google Scholar] [CrossRef] [PubMed]
- Kimmich, R. NMR Tomography, Diffusometry, Relaxometry; Springer: Berlin, Germany, 1997. [Google Scholar]
- Price, W.S. NMR Studies of Translational Motion; University Press: Cambridge, UK, 2009. [Google Scholar]
- Kärger, J.; Valiullin, R. Diffusion in porous media. In Encyclopedia of Magnetic Resonance; Harris, R.K., Wasylishen, R.E., Eds.; John Wiley: Chichester, UK, 2011. [Google Scholar]
- Callaghan, P.T. Translational Dynamics and Magnetic Resonance; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Mehlhorn, D.; Valiullin, R.; Kärger, J.; Cho, K.; Ryoo, R. Exploring mass transfer in mesoporous zeolites by NMR diffusometry. Materials 2012, 5, 699–720. [Google Scholar] [CrossRef]
- Mehlhorn, D.; Valiullin, R.; Kärger, J.; Cho, K.; Ryoo, R. Intracrystalline diffusion in mesoporous zeolites. Chem. Phys. Chem. 2012, 13, 1495–1499. [Google Scholar] [PubMed]
- Mehlhorn, D.; Valiullin, R.; Kärger, J.; Cho, K.; Ryoo, R. Exploring the hierarchy of transport phenomena in hierarchical pore systems by NMR diffusion measurement. Microporous Mesoporous Mater. 2012, 164, 273–279. [Google Scholar] [CrossRef]
- Ruthven, D.M. Fundamentals of adsorption equilibrium and kinetics in microporous solids. In Adsorption and Diffusion; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin, Germany, 2008; Volume 7, pp. 1–43. [Google Scholar]
- Eic, M.; Ruthven, D.M. A new experimental technique for measurement of intracrystalline diffusivity. Zeolites 1988, 8, 40–45. [Google Scholar] [CrossRef]
- Ruthven, D.M.; Brandani, S.; Eic, M. Measurement of diffusion in microporous solids by macroscopic methods. In Adsorption and Diffusion; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin, Germany, 2008; Volume 7, pp. 45–85. [Google Scholar]
- Yasuda, Y. Frequency response method for investigation of gas/surface dynamic phenomena. Heterog. Chem. Rev. 1994, 1, 103–124. [Google Scholar]
- Song, L.; Rees, L.V.C. Frequency response measurements of diffusion in microporous materials. In Adsorption and Diffusion; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin, Germany, 2008; Volume 7, pp. 235–276. [Google Scholar]
- Rebo, H.P.; Chen, D.; Brownrigg, M.S.A.; Moljord, K.; Holmen, A. Adsorption and diffusion in HZSM-5 zeolite studied by an oscillating microbalance. Collect. Czech. Chem. Commun. 1997, 62, 1832–1842. [Google Scholar] [CrossRef]
- Zhu, W.; Kapteijn, F.; Moulijn, J.A. Diffusion of linear and branched C-6 alkanes in silicalite-1 studied by the tapered element oscillating microbalance. Microporous Mesoporous Mater. 2001, 47, 157–171. [Google Scholar] [CrossRef]
- Zhu, W.; Malekian, A.; Eic, M.; Kapteijn, F.; Moulijn, J.A. Concentration-dependent diffusion of isobutane in silicalite-1 studied with the ZLC technique. Chem. Eng. Sci. 2004, 59, 3827–3835. [Google Scholar] [CrossRef]
- Chmelik, C.; Kärger, J. In-situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 2010, 39, 4864–4884. [Google Scholar] [CrossRef] [PubMed]
- Gueudré, L.; Binder, T.; Chmelik, C.; Hibbe, F.; Ruthven, D.M.; Kärger, J. Micro-imaging by interference microscopy: A case study of orientation-dependent guest diffusion in MFI-type zeolite host crystals. Materials 2012, 5, 721–740. [Google Scholar] [CrossRef]
- Schemmert, U.; Kärger, J.; Krause, C.; Rakoczy, R.A.; Weitkamp, J. Monitoring the evolution of intracrystalline concentration. Europhys. Lett. 1999, 46, 204–210. [Google Scholar] [CrossRef]
- Lehmann, E.; Vasenkov, S.; Kärger, J.; Zadrozna, G.; Kornatowski, J.; Weiss, Ö.; Schüth, F. Inhomogeneous distribution of water adsorbed under low pressure in CrAPO-5 and SAPO-5: An interference microscopy study. J. Phys. Chem. B 2003, 107, 4685–4687. [Google Scholar] [CrossRef]
- Hibbe, F.; Chmelik, C.; Heinke, L.; Pramanik, S.; Li, J.; Ruthven, D.M.; Tzoulaki, D.; Kärger, J. The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J. Am. Chem. Soc. 2011, 133, 2804–2807. [Google Scholar] [CrossRef] [PubMed]
- Sholl, D.S. Metal-organic frameworks: A porous maze. Nat. Chem. 2011, 3, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, E.; Chmelik, C.; Scheidt, H.; Vasenkov, S.; Staudte, B.; Kärger, J.; Kremer, F.; Zadrozna, G.; Kornatowski, J. Regular intergrowth in the AFI type crystals: Influence on the intracrystalline adsorbate distribution as observed by interference and FTIR-microscopy. J. Am. Chem. Soc. 2002, 124, 8690–8692. [Google Scholar] [CrossRef] [PubMed]
- Chmelik, C. FTIR Microscopy as a Tool for Studying Molecular Transport in Zeolites. Ph.D. Thesis, University of Leipzig, Leipzig, Germany, 2007. [Google Scholar]
- Chmelik, C.; Bux, H.; Caro, J.; Heinke, L.; Hibbe, F.; Titze, T.; Kärger, J. Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett. 2010, 104, 85902:1–85902:4. [Google Scholar]
- Ruthven, D.M.; Reyes, S.C. Adsorptive separation of light olefins from paraffins. Microporous Mesoporous Mater. 2007, 104, 59–66. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Liang, J.; Li, H.Y.; Zhao, S.; Guo, W.; Wang, R.H.; Ying, M.L. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl. Catal. 1990, 64, 31–40. [Google Scholar] [CrossRef]
- Wilson, S.; Barger, P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous Mesoporous Mater. 1999, 29, 117–126. [Google Scholar] [CrossRef]
- Stöcker, M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous Mesoporous Mater. 1999, 29, 3–48. [Google Scholar] [CrossRef]
- Breck, D.W.; Eversole, W.G.; Milton, R.M.; Reed, T.B.; Thomas, T.L. Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. J. Am. Chem. Soc. 1956, 78, 5963–5972. [Google Scholar] [CrossRef]
- Reed, T.B.; Breck, D.W. Crystalline zeolites. II. Crystal structure of synthetic zeolite, type-A. J. Am. Chem. Soc. 1956, 78, 5972–5977. [Google Scholar] [CrossRef]
- Cho, K.; Cho, H.S.; de Menorval, L.C.; Ryoo, R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem. Mater. 2009, 21, 5664–5673. [Google Scholar] [CrossRef]
- Ryoo, R.; Cho, S.; Pak, C.; Lee, J.Y. Clustering of platinum atoms into nanoscale particle and network on NaY zeolite. Catal. Lett. 1993, 20, 107–115. [Google Scholar] [CrossRef]
- Karge, H.G.; Geidel, E. Vibrational spectroscopy. In Characterization I; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin, Germany, 2004; Volume 4, pp. 1–201. [Google Scholar]
- Karge, H.G. Infrared spectroscopic investigation of diffusion, co-diffusion and counter-diffusion of hydrocarbon molecules in zeolites. Comptes Rendus Chim. 2005, 8, 303–319. [Google Scholar] [CrossRef]
- Karge, H.G.; Kärger, J. Application of IR spectroscopy, IR microscopy, and optical interference microscopy to diffusion in zeolites. In Adsorption and Diffusion; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin, Germany, 2008; Volume 7, pp. 135–206. [Google Scholar]
- Heinke, L.; Chmelik, C.; Kortunov, P.; Shah, D.B.; Brandani, S.; Ruthven, D.M.; Kärger, J. Analysis of thermal effects in infrared and interference microscopy: N-butane-5A and methanol-ferrierite systems. Microporous Mesoporous Mater. 2007, 104, 18–25. [Google Scholar] [CrossRef]
- Barrer, R.M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, UK, 1978. [Google Scholar]
- Kirchner, T.; Shakhov, A.; Zeigermann, P.; Valiullin, R.; Kärger, J. Probing mesopore connectivity in hierarchical nanoporous materials. Carbon 2012, 50, 4804–4808. [Google Scholar] [CrossRef]
- Zeigermann, P.; Naumov, S.; Mascotto, S.; Kärger, J.; Smarsly, B.M.; Valiullin, R. Diffusion in Hierarchical Mesoporous Materials: Applicability and generalization of the fast-exchange diffusion model. Langmuir 2012, 28, 3621–3632. [Google Scholar] [PubMed]
- Janssen, A.H.; Koster, A.J.; de Jong, K.P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y. Angew. Chem. Int. Ed. 2001, 40, 1102–1104. [Google Scholar] [CrossRef]
- Kortunov, P.; Vasenkov, S.; Kärger, J.; Elia, M.F.; Perez, M.; Stöcker, M.; Papadopoulos, G.K.; Theodorou, D.; Drescher, B.; McElhiney, G.; et al. Diffusion in fluid catalytic cracking catalysts on various displacement scales and its role in catalytic performance. Chem. Mater. 2005, 17, 2466–2474. [Google Scholar] [CrossRef]
- Kortunov, P.; Vasenkov, S.; Kärger, J.; Valiullin, R.; Gottschalk, P.; Elia, M.F.; Perez, M.; Stöcker, M.; Drescher, B.; McElhiney, G.; et al. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. J. Am. Chem. Soc. 2005, 127, 13055–13059. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.H.; Camblor, M.A.; Villaescusa, L.A.; Kühl, G.H. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous Mesoporous Mater. 2004, 67, 27–33. [Google Scholar]
- Kärger, J.; Pfeifer, H.; Richter, R.; Furtig, H.; Roscher, W.; Seidel, R. NMR-Study of mass-transfer in granulated molecular-sieves. AIChE J. 1988, 34, 1185–1189. [Google Scholar] [CrossRef]
- Kärger, J.; Bülow, M.; Millward, B.R.; Thomas, J.M. A phenomenological study of surface barriers in zeolites. Zeolites 1986, 6, 146–150. [Google Scholar] [CrossRef]
- Micke, A.; Bülow, M.; Kocirik, M. A nonequilibrium surface barrier for sortpion kinetics of p-ethyltoluene on ZSM-5 molecular sieves. J. Phys. Chem. 1994, 98, 924–929. [Google Scholar] [CrossRef]
- Wloch, J. Effect of surface etching of ZSM-5 zeolite crystals on the rate of n-hexane sorption. Microporous Mesoporous Mater. 2003, 62, 81–86. [Google Scholar] [CrossRef]
- Jentys, A.; Mukti, R.R.; Tanaka, H.; Lercher, J.A. Energetic and entropic contributions controlling the sorption of benzene in zeolites. Microporous Mesoporous Mater. 2006, 90, 284–292. [Google Scholar] [CrossRef]
- Kornatowksi, J.; Wloch, J. Kinetic studies of sorption of n-hexane in vanadium substituted MFI type zeolites of various crystal morphologies. Microporous Mesoporous Mater. 2009, 125, 17–22. [Google Scholar]
- Reitmeier, S.J.; Gobin, O.C.; Jentys, A.; Lercher, J.A. Influence of postsynthetic surface modifcation on shape selective transport of aromatic molecules in HZSM-5. J. Phys. Chem. C 2009, 113, 15355–15363. [Google Scholar] [CrossRef]
- Tzoulaki, D.; Heinke, L.; Castro, M.; Cubillas, P.; Anderson, M.W.; Zhou, W.Z.; Wright, P.A.; Kärger, J. Assessing molecular transport properties of nanoporous materials by interference microscopy: remarkable effects of composition and microstructure on diffusion in the silicoaluminophosphate zeotype STA-7. J. Am. Chem. Soc. 2010, 132, 11665–11670. [Google Scholar] [CrossRef]
- Brabec, L.; Kocirik, M. Silicalite-1 crystals etched with hydrofluoric acid dissolved in water or acetone. J. Phys. Chem. C 2010, 114, 13685–13694. [Google Scholar] [CrossRef]
- Binder, T.; Krause, B. C.; Krutyeva, M.; A. Huang, J.; Caro, J.; Kärger, J. Surface permeability on zeolite NaCaA enhanced by layer deposition. Microporous Mesoprous Mater. 2011, 146, 151–157. [Google Scholar] [CrossRef]
- Hibbe, F.; Caro, J.; Chmelik, C.; Huang, A.; Kirchner, T.; Ruthven, D.; Valiullin, R.; Kärger, J. Monitoring molecular mass transfer in cation-free nanoporous host-crystals of type AlPO-LTA. J. Am. Chem. Soc. 2012, 134, 7725–7732. [Google Scholar] [CrossRef] [PubMed]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Krishna, R.; van Baten, J.M. Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 2008, 109, 91–108. [Google Scholar] [CrossRef]
- Ruthven, D.M.; DeSisto, W.; Higgins, S. Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion model. Chem. Eng. Sci. 2009, 64, 3201–3203. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes. J. Membr. Sci. 2011, 369, 545–549. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Nicholson, D. Some pitfalls in the use of the Knudsen equation in modelling diffusion in nanoporous materials. Chem. Eng. Sci. 2011, 66, 284–293. [Google Scholar] [CrossRef]
- Petropoulos, J.H.; Papadokostaki, K.G. May the Knudsen Equation be legitimately, or at least usefully, applied to dilute adsorbable gas flow in mesoporous media? Chem. Engin. Sci. 2011, 68, 392–400. [Google Scholar] [CrossRef]
- McCall, D.W.; Douglass, D.C.; Anderson, E.W. Diffusion in liquids. J. Chem. Phys. 1959, 31, 1555–1557. [Google Scholar] [CrossRef]
- Armitage, D.A.; Linford, R.G.; Thornhill, D.G.T. The solubilities of gases in liquid mixtures: Ethane in (benzene + 2,2,4-trimethylpentane), sulphur hexafluoride in (benzene + 2,2,4-trimethylpentane), and ethane in (benzene + cyclohexane) at 302.75 K. J. Chem. Thermodyn. 1983, 15, 225–230. [Google Scholar] [CrossRef]
- Heink, W.; Kärger, J.; Pfeifer, H.; Datema, K.P.; Nowak, A.K. Self-diffusion measurements of n-alkanes in zeolite nacaa by pulsed field gradient nuclear magnetic resonance. J. Chem. Soc. Faraday Trans. 1992, 88, 3505–3509. [Google Scholar] [CrossRef]
- Simon, J.M.; Decrette, A.; Bellat, J.B.; Salazar, J.M. Kinetics of adsorption of N-butane on an aggregate of silicalite by transient non-equilibrium molecular dynamics. Mol. Simul. 2004, 30, 621–635. [Google Scholar] [CrossRef]
- Simon, J.M.; Bellat, J.B.; Vasenkov, S.; Kärger, J. Sticking probability on zeolites. J. Phys. Chem. B 2005, 109, 13523–13528. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, N.E.R.; Smit, B.; Keil, F.J. Predicting local transport coefficients at solid-gas interfaces. J. Phys. Chem. C 2012, 116, 18878–18883. [Google Scholar] [CrossRef]
- Zimmermann, N.E.R.; Zabel, T.J.; Keil, F.J. Transport into nanosheets: Diffusion equations put to test. J. Phys. Chem. C 2013, 117, 7384–7390. [Google Scholar] [CrossRef]
- Garayhi, A.R.; Keil, F.J. Modellierung von reaktionen mit volumenänderung in komposit-katalysatorpellets am beispielder MTO-synthese in ZSM-5-zeolithkatalysatoren (in German). Chem. Ing. Techn. 1997, 69, 980–984. [Google Scholar]
- Garayhi, A.R.; Keil, F.; Abdul, R.G.; Frerich, J.K. Multicomponent diffusion and reaction in composite catalysts—A monte-carlo and dusty-gas model approach applied to the methanol-to-olefin synthesis in zeolite. Chem. Eng. 1997, 41, 57–72. [Google Scholar]
- Rao, S.M.; Coppens, M.O. Mitigating deactivation effects through rational design of hierarchically structured catalysts: Application to hydrodemetalation. Ind. Eng. Chem. Res. 2010, 49, 11087–11097. [Google Scholar] [CrossRef]
- Rao, S.M.; Coppens, M.O. Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—Application to hydrodemetalation. Chem. Eng. Sci. 2012, 83, 66–76. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, M.R.; Titze, T.; Schmidt, F.; Mehlhorn, D.; Chmelik, C.; Valiullin, R.; Bhatia, S.K.; Kaskel, S.; Ryoo, R.; Kärger, J. Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials 2013, 6, 2662-2688. https://doi.org/10.3390/ma6072662
Bonilla MR, Titze T, Schmidt F, Mehlhorn D, Chmelik C, Valiullin R, Bhatia SK, Kaskel S, Ryoo R, Kärger J. Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials. 2013; 6(7):2662-2688. https://doi.org/10.3390/ma6072662
Chicago/Turabian StyleBonilla, Mauricio Rincon, Tobias Titze, Franz Schmidt, Dirk Mehlhorn, Christian Chmelik, Rustem Valiullin, Suresh K. Bhatia, Stefan Kaskel, Ryong Ryoo, and Jörg Kärger. 2013. "Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA" Materials 6, no. 7: 2662-2688. https://doi.org/10.3390/ma6072662
APA StyleBonilla, M. R., Titze, T., Schmidt, F., Mehlhorn, D., Chmelik, C., Valiullin, R., Bhatia, S. K., Kaskel, S., Ryoo, R., & Kärger, J. (2013). Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 6(7), 2662-2688. https://doi.org/10.3390/ma6072662