Experimental Study on Cementitious Composites Embedded with Organic Microcapsules
Abstract
:1. Introduction
2. Experiments and Discussion
2.1. Microcapsules
2.2. Mortar Specimens
2.3. Mechanical Behavior
2.3.1. Variation of Mechanical Behavior Resulting from the Addition of Organic Microcapsules
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Name | 0.45–0 | 0.45–3 | 0.45–6 | 0.45–9 | 0.5–0 | 0.5–3 | 0.5–6 | 0.5–9 | 0.55–0 | 0.55–3 | 0.55–6 | 0.55–9 |
W/C | 0.45 | 0.45 | 0.45 | 0.45 | 0.5 | 0.5 | 0.5 | 0.5 | 0.55 | 0.55 | 0.55 | 0.55 |
Microcapsule content (to cement mass) | 0% | 3% | 6% | 9% | 0% | 3% | 6% | 9% | 0% | 3% | 6% | 9% |
2.3.2. Strength Recovery Rate Resulting from Self-Healing
No. | A (W/C) | B (Amount of microcapsules) | C (Preloading rate) | D (Error) | Original strength (MPa) | Strength after healing (MPa) | Recovery rate |
---|---|---|---|---|---|---|---|
1 | 0.45 | 0% | 30% | 1 | 9.1 | 8.9 | 97% |
2 | 0.45 | 3% | 50% | 2 | 8.9 | 9.5 | 107% |
3 | 0.45 | 6% | 70% | 3 | 7.9 | 8.9 | 113% |
4 | 0.5 | 0% | 50% | 3 | 8.3 | 8.4 | 101% |
5 | 0.5 | 3% | 70% | 1 | 8.2 | 8.6 | 104% |
6 | 0.5 | 6% | 30% | 2 | 7.6 | 9.3 | 122% |
7 | 0.55 | 0% | 70% | 2 | 7.8 | 6.7 | 86% |
8 | 0.55 | 3% | 30% | 3 | 7.7 | 8.2 | 106% |
9 | 0.55 | 6% | 50% | 1 | 7.1 | 8.5 | 119% |
K1 | 106% | 95% | 109% | 107% | - | - | - |
K2 | 109% | 106% | 109% | 105% | - | - | - |
K3 | 104% | 118% | 101% | 107% | - | - | - |
R | 5% | 23% | 8% | 2% | - | - | - |
Resource | Deviation summation SSj | Freedom f | Average deviation MSj | F value | F value | Contribution |
---|---|---|---|---|---|---|
A (W/C) | 4.23 × 10−3 | 2 | 2.12 × 10−3 | 6.65 | F0.01(2,2) = 99 | 3.64% |
B (Amount of microcapsules) | 8.07 × 10−2 | 2 | 4.04 × 10−2 | 126.92 | F0.05(2,2) = 19 | 81.16% |
C (Preloading rate) | 1.31 × 10−2 | 2 | 6.55 × 10−3 | 20.58 | F0.25(2,2) = 3 | 12.62% |
D (Error) | 6.36 × 10−4 | 2 | 3.18 × 10−4 | – | – | 2.58% |
Total | 9.87 × 10−2 | 8 | – | – | – | – |
2.4. Organic Microcapsules in Mortar Specimens
2.5. Chloride Ion Permeability Tests
No. | Amount of microcapsules | Status | Height of specimen, h (mm) | Average temperature, T (K) | Depth of chloride ion migration, xd (mm) |
---|---|---|---|---|---|
A1 | 0% | Original | 51.3 | 293.6 | 14.1 |
A2 | 0% | After preloading | 55.0 | 294.1 | 17.2 |
A3 | 0% | Healed | 53.1 | 292.1 | 16.5 |
B1 | 3% | Original | 51.4 | 293.4 | 12.7 |
B2 | 3% | After preloading | 51.2 | 293.4 | 16.1 |
B3 | 3% | Healed | 52.8 | 292.2 | 13.6 |
C1 | 6% | Original | 51.2 | 293.5 | 14.7 |
C2 | 6% | After preloading | 51.3 | 293.7 | 17.6 |
C3 | 6% | Healed | 50.4 | 292.3 | 14.9 |
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cailleux, E.; Pollet, V. Investigations on the Development of Self-Healing Properties in Protective Coatings for Concrete and Repair Mortars. In Proceedings of the 2nd International Conference on Self-Healing Materials, Chicago, IL, USA, 28 June–1 July 2009.
- Van Breugel, K. Is There a Market for Self-Healing Cement-Based Materials? In Proceedings of the First International Conference on Self-Healing Materials, Noordwijk, The Netherlands, 18–20 April 2007. No. 82.
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583. [Google Scholar] [CrossRef]
- Joseph, C.; Gardner, D.; Jefferson, T.; Isaacs, B.; Lark, B. Self-healing cementitious materials: A review of recent work. Proc. ICE Constr. Mater. 2010, 164, 29–41. [Google Scholar] [CrossRef]
- Mihashi, H.; Nishiwaki, T. Development of engineered self-healing and self-repairing concrete-state-of-the-art report. J. Adv. Concr. Technol. 2012, 10, 170–184. [Google Scholar] [CrossRef]
- Gollapudi, U.K.; Knutson, C.L.; Bang, S.S.; Islam, M.R. A new method for controlling leaching through permeable channels. Chemosphere 1995, 30, 695–705. [Google Scholar] [CrossRef]
- Tittelboom, K.V.; Belie, N.D.; Muynck, W.D.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Jonkers, H.M. Self-healing concrete: A biological approach. In Self Healing Materials: An Introduction; van der Zwaag, S., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 195–204. [Google Scholar]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 2010, 36, 230–235. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 2011, 33, 763–770. [Google Scholar] [CrossRef]
- Zemskov, S.V.; Jonkers, H.M.; Vermolen, F.J. A mathematical model for bacterial self-healing of cracks in concrete. J. Intell. Mater. Syst. Struct. 2012. [Google Scholar] [CrossRef]
- Kishi, T.; Ahn, T.H.; Hosoda, A.; Takaoka, H. Self-Healing Behavior by Cementitious Recrystallization of Cracked Concrete Incorporating Expansive Agent. In Proceedings of the First International Conference on Self-Healing Materials, Noordwijk, The Netherlands, 18–20 April 2007.
- Ahn, T.H.; Kishi, T. Crack self-healing behavior of cementitious composites incorporating various miner admixtures. J. Adv. Concr. Technol. 2010, 8, 171–186. [Google Scholar] [CrossRef]
- Taniguchi, M.; Hama, Y.; Katsura, O.; Sagawa, T.; Na, S.H. Self Healing of Frost-Damaged Concrete Incorporating Fly Ash. In Proceedings of 3rd International Conference on Self-Healing Materials, Bath, UK, 27–29 June 2011.
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Ni, Z.; Han, N.; Dong, B.; Du, X.; Huang, Z.; Zhang, M. Self-Healing Mechanism of A Novel Cementitious Composite Using Microcapsules. In Proceedings of the International Conference on Durability of Concrete Structures, Hangzhou, China, 26–27 November 2008.
- Yang, Z.; Hollar, J.; He, X.; Shi, X. A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem. Concr. Compos. 2011, 33, 506–512. [Google Scholar]
- Dry, C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct. 1994, 3, 118–123. [Google Scholar]
- Dry, C.; McMillan, W. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater. Struct. 1996, 5, 297–300. [Google Scholar] [CrossRef]
- Dry, C.M. Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cem. Concr. Res. 2000, 30, 1969–1977. [Google Scholar] [CrossRef]
- Li, V.C.; Lim, Y.M.; Chan, Y.W. Feasibility study of a passive smart self-healing cementitious composite. Compos. B 1998, 29, 819–827. [Google Scholar] [CrossRef]
- Mihashi, H.; Kaneko, Y.; Nishiwaki, T.; Otsuka, K. Fundamental study on development of intelligent concrete characterized by self-healing capability for strength. Trans. Jpn. Concr. Inst. 2000, 22, 441–450. [Google Scholar]
- Joseph, C.; Jefferson, A.D.; Cantoni, M.B. Issues Relating to the Autonomic Healing of Cementitious Materials. In Proceedings of First International Conference on Self-Healing Materials (available on CD-ROM), Noordwijk, The Netherlands, 18–20 April 2007. No. 61.
- Nishiwaki, T.; Mihashi, H.; Jang, B.K.; Miura, K. Development of self-healing system for concrete with selective heating around crack. J. Adv. Concr. Technol. 2006, 4, 267–275. [Google Scholar] [CrossRef]
- Sakai, Y.; Kitagawa, Y.; Fukuta, T.; Iiba, M. Experimental study on enhancement of self-restoration of concrete beams using SMA wire. Proc. SPIE 2003, 5057, 178–186. [Google Scholar]
- Jefferson, A.; Joseph, C.; Lark, R.; Isaacs, B.; Dunn, S.C.; Weager, B. A new system for crack closure of cementitious materials using shrinkable polymers. Cem. Concr. Res. 2010, 40, 795–801. [Google Scholar] [CrossRef]
- Standardization Administration of China. Common Portland Cement. GB 175-2007. Available online: http://gbread.sac.gov.cn/bzzyReadWebApp/standardresources.action?m=frontFindDetailBybznum& bzNum=GB 175-2007 (accessed on 12 September 2012).
- International Standard Organization. Method of Testing Cements—Determination of Strength ISO 679:1989. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=4848 (accessed on 12 September 2012).
- Ni, Z.; Du, X. Materials design for self-healing epoxy adhesive (in Chinese). Polym. Mater. Sci. Eng. 2009, 25, 133–136. [Google Scholar]
- Keller, M.W.; Sottos, N.R. Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 2006, 46, 725–733. [Google Scholar] [CrossRef]
- Cheng, Y. Engineering Experiment Design Method (in Chinese); Wuhan University of Technology Publisher: Wuhan, China, 2010. [Google Scholar]
- Tang, L. Chloride Transport in Concrete—Measurement and Prediction. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 1996. [Google Scholar]
- Wu, L.; Deng, D.; Zeng, Z.; Yuan, T. RCM testing the penetration and diffusion of chloride ion in concrete. Concrete 2006, 1, 100–103. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, X.; Xing, F.; Zhang, M.; Han, N.; Qian, Z. Experimental Study on Cementitious Composites Embedded with Organic Microcapsules. Materials 2013, 6, 4064-4081. https://doi.org/10.3390/ma6094064
Wang X, Xing F, Zhang M, Han N, Qian Z. Experimental Study on Cementitious Composites Embedded with Organic Microcapsules. Materials. 2013; 6(9):4064-4081. https://doi.org/10.3390/ma6094064
Chicago/Turabian StyleWang, Xianfeng, Feng Xing, Ming Zhang, Ningxu Han, and Zhiwei Qian. 2013. "Experimental Study on Cementitious Composites Embedded with Organic Microcapsules" Materials 6, no. 9: 4064-4081. https://doi.org/10.3390/ma6094064
APA StyleWang, X., Xing, F., Zhang, M., Han, N., & Qian, Z. (2013). Experimental Study on Cementitious Composites Embedded with Organic Microcapsules. Materials, 6(9), 4064-4081. https://doi.org/10.3390/ma6094064