Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent
Abstract
:1. Introduction
2. Tests on Structural Lightweight Foamed Mortar
2.1. Test Overview
Material/test type | Ordinary Portland cement | Silica fume |
---|---|---|
Specific gravity | 3.05 | 2.2 |
Fineness (cm2/g) | 3,357 | – |
BET surface area | – | 200,000 |
Initial setting (min) | 110 | – |
Component | Ordinary Portland cement (%) | Silica fume (%) | BFS, wt% |
---|---|---|---|
SiO2 | 21.94 | 93.2 | 34.5 |
Al2O3 | 4.95 | 0.44 | 13.74 |
Fe2O3 | 3.74 | 0.20 | 0.97 |
CaO | 62.33 | – | 42.1 |
MgO | 2.08 | 0.81 | 7.29 |
SO3 | 2.22 | 0.45 | – |
K2O | 0.56 | 1.28 | 0.49 |
Na2O | 0.32 | 0.59 | 0.22 |
TiO2 | 0.17 | – | – |
Mn2O3 | 0.05 | – | – |
CI− | 0.01 | – | 0.022 |
LOI | 1.78 | – | −1.05 |
IR | 0.24 | – | – |
C | – | 0.55 | – |
C(isolated) | – | 0.41 | – |
pH | – | 7.9 | – |
Si(isolated) | – | 0.29 | – |
SiC | – | 0.50 | – |
Type | Aggregate size | Absorption (%) | Density (g/cm3) | Unit weight (kg/m3) |
---|---|---|---|---|
Coarse aggregates | 25 mm | 1.79 | 2.60 | 1530 |
Fine aggregates | <5 mm | 2.43 | 2.55 | 1677 |
Main component | Type | Density (g/cm2) | Usage (wt% of Binder) | Viscosity | |||
---|---|---|---|---|---|---|---|
Spindle (NO) | Torque (N·m) | RPM | |||||
PC (polycarboxilic) | Liquid | 1.05 | 1~4 | 1 | 934 | 140 | |
Silica composite mineral | 1.03~1.04 | 0.3~0.9 | – | – | – |
No. | W/B (%) | Fa (%) | Fa (kg/m3) | Weight mixing (kg/m3) | AD % | |||
---|---|---|---|---|---|---|---|---|
W | C | SF | S | |||||
20-0 | 20 | 0 | 0 | 150 | 603 | 139 | 452 | 1.9 |
20-0.3 | 0.3 | 2.22 | ||||||
20-0.6 | 0.6 | 4.45 | ||||||
20-0.9 | 0.9 | 6.67 | ||||||
25-0 | 25 | 0 | 0 | 170 | 575 | 95 | 452 | 1.4 |
25-0.3 | 0.3 | 2.01 | ||||||
25-0.6 | 0.6 | 4.02 | ||||||
25-0.9 | 0.9 | 6.03 | ||||||
30-0 | 30 | 0 | 0 | 180 | 520 | 75 | 452 | 0.9 |
30-0.3 | 0.3 | 1.78 | ||||||
30-0.6 | 0.6 | 3.57 | ||||||
30-0.9 | 0.9 | 5.35 | ||||||
60 | 60 | – | – | 156 | 260 | – | 86 | – |
2.2. Test Method and Results of Structural Lightweight Foamed Mortar
2.2.1. The Dosage of Foam Agent and Density
2.2.2. Apparent Density of Structural Lightweight Foamed Mortar
2.2.3. Porosity of Structural Lightweight Foamed Mortar
Description | Compressive strength (MPa) | Apparent density (t/m3) | Porosity (%) | |||
---|---|---|---|---|---|---|
7 days | 28 days | Fresh | surface dry | overdry condition | ||
20-0 | 74.9 | 101.05 | 2.223 | 2.307 | 2.233 | 3.2 |
20-0.3 | 32.37 | 51.88 | 1.748 | 1.856 | 1.780 | 22.4 |
20-0.6 | 27.67 | 31.17 | 1.510 | 1.791 | 1.620 | 29.77 |
20-0.9 | 30.03 | 37.18 | 1.570 | 1.826 | 1.660 | 28.04 |
25-0 | 72.93 | 80.32 | 2.226 | 2.289 | 2.236 | 7.41 |
25-0.3 | 39.33 | 48.21 | 1.770 | 1.982 | 1.817 | 21.24 |
25-0.6 | 22 | 28.07 | 1.509 | 1.812 | 1.586 | 31.25 |
25-0.9 | 34.7 | 39.00 | 1.659 | 1.921 | 1.729 | 25.05 |
30-0 | 54.63 | 77.01 | 2.073 | 2.252 | 2.157 | 8.4 |
30-0.3 | 16.33 | 22.19 | 1.501 | 1.738 | 1.604 | 34.81 |
30-0.6 | 9.3 | 11.22 | 1.469 | 1.724 | 1.385 | 39.97 |
30-0.9 | 11.80 | 13.12 | 1.514 | 1.734 | 1.497 | 39.45 |
60 | 9.42 | 21.46 | 2.064 | 2.112 | 1.902 | 9.94 |
3. Structural Lightweight Foamed Concrete Tests
No. | W/B (%) | Fa (%) | Fa (kg/m3) | Weight mixing (kg/m3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
W (kg/m3) | C (kg/m3) | Silica Fume (kg/m3) | BFS (kg/m3) | S (kg/m3) | G (kg/m3) | AD (%) | ||||
17-0 | 17 | 0 | 0 | 155 | 603 | 139 | 186 | 452 | 880 | 2.5 |
17-0.1 | 0.1 | 0.7 | ||||||||
17-0.3 | 0.3 | 2.2 | ||||||||
17-0.6 | 0.6 | 4.45 | ||||||||
17-0.9 | 0.9 | 6.67 | ||||||||
24-0 | 24 | 0 | 0 | 168 | 503 | 85.1 | 108 | 759 | 1101 | 1 |
24-0.3 | 0.3 | 1.76 | ||||||||
24-0.6 | 0.6 | 3.52 | ||||||||
60-0 | 60 | 0 | 0 | 156 | 260 | 0 | 0 | 867 | 1004 | 0.5 |
Description | Compressive strength (MPa) | Apparent density (t/m3) | Porosity (%) | ||||
---|---|---|---|---|---|---|---|
3 days | 7 days | 28 days | Fresh | Surface dry | Overdry condition | ||
17-0 | 68.8 | 76.5 | 91.3 | 2.42 | 2.48 | 2.36 | 4.84 |
17-0.1 | 53.65 | 55.9 | 70.58 | 2.14 | 2.2 | 2.14 | 13.71 |
17-0.3 | 36.30 | 36.3 | 60.32 | 1.95 | 2.08 | 2.0 | 19.35 |
17-0.6 | 24.60 | 36 | 43.15 | 1.78 | 1.95 | 1.87 | 24.60 |
17-0.9 | 29.03 | 15.6 | 19.5 | 1.70 | 1.79 | 1.76 | 29.03 |
24-0 | 54.70 | 60.0 | 77.55 | 2.35 | 2.31 | 2.28 | 1.30 |
24-0.3 | 43.40 | 46.2 | 59.25 | 1.88 | 2.14 | 2.1 | 9.09 |
24-0.6 | 20.90 | 22.7 | 30.1 | 1.67 | 1.96 | 1.9 | 17.75 |
60-0 | 17.55 | 20.15 | 30.25 | 2.41 | 2.4 | 2.31 | 3.71 |
60-0.3 | 8.75 | 9.65 | 14.80 | 1.92 | 2.1 | 1.91 | 20.42 |
60-0.6 | 8.05 | 9.45 | 13.40 | 1.71 | 1.94 | 1.85 | 22.92 |
3.1. Dosage of Foaming Agent and Density
3.2. Porosity and Compressive Strength Dependency on Density of Structural Lightweight Foamed Concrete
3.3. Modulus of Elasticity Measurement of Structural Lightweight Foamed Concrete
Description | Compressive strength (MPa) | Tested modulus of elasticity (GPa) | Structure design criteria estimated modulus of elasticity (GPa) |
---|---|---|---|
17-0 | 87.3 | 3.66 | 3.92 |
17-0.1 | 66.58 | 3.06 | 3.34 |
17-0.3 | 48.32 | 2.77 | 2.60 |
17-0.6 | 39.15 | 2.23 | 2.33 |
17-0.9 | 19.55 | 1.61 | 1.65 |
24-0 | 77.55 | 3.34 | 3.74 |
24-0.3 | 43 | 2.57 | 2.43 |
24-0.6 | 31.1 | 1.89 | 2.16 |
60-0 | 27.25 | 2.66 | 1.71 |
60-0.3 | 14.8 | 1.46 | 1.70 |
60-0.6 | 13.4 | 1.34 | 1.68 |
Description | Apparent density (t/m3) | Porosity | ||
---|---|---|---|---|
Fresh density | Surface dry density | Over dry condition density | ||
17-0 | 2.45 | 2.45 | 2.36 | 3.67 |
17-0.1 | 2.1 | 2.2 | 2.14 | 12.65 |
17-0.3 | 1.89 | 1.98 | 1.95 | 20.41 |
17-0.6 | 1.78 | 1.91 | 1.87 | 23.67 |
17-0.9 | 1.70 | 1.72 | 1.7 | 30.61 |
24-0 | 2.35 | 2.41 | 2.28 | 6.25 |
24-0.3 | 1.88 | 1.94 | 1.92 | 20.99 |
24-0.6 | 1.67 | 1.9 | 1.86 | 25.1 |
60-0 | 2.29 | 2.35 | 2.12 | 10.64 |
60-0.3 | 1.74 | 1.83 | 1.8 | 23.40 |
60-0.6 | 1.68 | 1.84 | 1.72 | 26.81 |
3.4. Size and Distribution of Foaming Agent and Fine Pores
4. Compressive Strength Estimation for Structural Lightweight Foamed Mortar and Structural Lightweight Foamed Concrete
4.1. Estimation of Fam and Fac
4.2. Estimation of Compressive Strength of Structural Lightweight Foamed Mortar and Concrete
5. Conclusions
- The increase in the foaming agent dosage results in the development of pores and, as a result, the density of mortar and concrete decreases.
- In order to obtain higher compressive strength, it is essential that the matrix of the concrete should be improved. Therefore, it is judged that creating pores through foaming agent addition to ultra-high strength concrete would be more efficient to produce structural lightweight concrete.
- In the scope of this study, the maximum dosage of foaming agent to produce independent foams was 0.6% by binder weight and the SEM analysis verified the existence of independent foam formation with sizes of 50–100 μm.
- It is possible to calculate the modulus of elasticity and compressive strength of structural lightweight foamed concrete from the measured values of modules of elasticity and compressive strength of concrete without foaming agent.
- This study confirms that structural lightweight concrete can be made with normal coarse aggregates and foaming agent.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Won, S.D. Engineering characteristics of plasticizer lightweight foamed concrete according to changes of mixing ratio. J. Korean Geotech. Soc. 2010, 11, 33–42. [Google Scholar]
- Zhang, M.H. Mechanical properties of high-strength lightweight concrete. JACI 1991, 88, 240–247. [Google Scholar]
- Shabbar, R. Comparison between ribbed slab structure using lightweight foam concrete and solid slab structure using normal concrete. J. Concr. Res. Lett. 2010, 1, 19–34. [Google Scholar]
- Othuman, M.A.; Wang, Y.C. Elevated temperature thermal properties of lightweight foamed concrete. J. Constr. Build. Mater. 2011, 25, 705–716. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Kan, A.; Demirboğab, R. A novel material for lightweight concrete production. J. Cem. Concr. Compos. 2009, 31, 489–495. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Lim, O.Y.; Lee, Y.L. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Constr. Build. Mater. J. 2013, 46, 39–47. [Google Scholar]
- Awang, H.; Mydin, A.O.; Ahmad, M.H. Mechanical and durability properties of fiber lightweight foamed concrete. Aust. J. Basic Appl. Sci. 2013, 7, 14–21. [Google Scholar]
- Korean Standard KS L ISO 679. In Methods of Testing Cements—Determination of Strength; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2006.
- Korean Standard KS F 4039. In Standard Specification for Foamed Concrete for Cast-in-Site; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2009.
- Korean Standard KS F 2403. In Standard Test Method for Making and Curing Concrete Specimens; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2014.
- Korean Standard KS F 2409. Method of Test for Unit Mass and Air Content of Fresh Concrete; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2010.
- Min, T.B.; Woo, Y.J.; Lee, H.S. An experimental study on freezing-thawing and mechanical properties of light weight foamed concrete using micro foaming agent. J. Korea Inst. Build. Constr. 2009, 9, 69–72. [Google Scholar] [CrossRef]
- Min, T.B.; Lee, H.S. A study on the properties of structure lightweight foamed concrete using the general aggregate and foaming agent. J. Archi. Inst. Korea 2010, 30, 225–226. [Google Scholar]
- Concrete Structural Design Standard Specification; Korean Concrete Institute: Seoul, Korea, 2007; pp. 67–68.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lee, H.-S.; Ismail, M.A.; Woo, Y.-J.; Min, T.-B.; Choi, H.-K. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent. Materials 2014, 7, 4536-4554. https://doi.org/10.3390/ma7064536
Lee H-S, Ismail MA, Woo Y-J, Min T-B, Choi H-K. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent. Materials. 2014; 7(6):4536-4554. https://doi.org/10.3390/ma7064536
Chicago/Turabian StyleLee, Han-Seung, Mohamed A. Ismail, Young-Je Woo, Tae-Beom Min, and Hyun-Kook Choi. 2014. "Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent" Materials 7, no. 6: 4536-4554. https://doi.org/10.3390/ma7064536
APA StyleLee, H. -S., Ismail, M. A., Woo, Y. -J., Min, T. -B., & Choi, H. -K. (2014). Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent. Materials, 7(6), 4536-4554. https://doi.org/10.3390/ma7064536