Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers
Abstract
:1. Introduction
2. Nano- and Biomaterials
2.1. Nanomaterials
Type | Examples | Type of molecule/species | Typical diameters a |
---|---|---|---|
Biological | Antibodies | Y-shaped proteins | 10–15 nm |
Aptamers | artificial, single stranded polynucleotides | 3–5 nm | |
DNA | polynucleotides | 3–50 nm | |
Enzymes | globular proteins | 6–40 nm | |
Cancer cells | cells | 10,000–40,000 nm | |
Inorganic | Metal nanoparticles | Ag, Au, Co, Cu, Fe, Ir, Ni, Pd | 1–100 nm |
Semicoductors | quantum dots | 2–20 nm | |
Nanowires | SiO2, TiO2, Si, GaN, InP, In2O3, Au, Cu, Pt, Ni | 1–50 nm | |
Organic | Carbon nanospheres and capsules | poly(divinyl)benzene, polyaniline, polypyrrole, polyacetylene | 10 nm–1 μm |
Carbon nanotubes (CNTs) | hollow carbon cylinders | – | |
– | SWCNT | 1–2 nm | |
– | MWCNT | 2–50 nm | |
Graphene | sp2 hybridized carbon sheets with hexagonal honeycomb-shaped lattices | – |
- (1)
- To advance world-class nanotechnology research and development;
- (2)
- To foster the transfer of new technologies into products for commercial and public benefit;
- (3)
- To develop and sustain educational resources, a skilled workforce and the supporting infrastructure and tools to advance nanotechnology.
2.2. Biological Nanomaterials
2.2.1. Antibodies as the Biorecognition Element
2.2.2. Enzyme Labels in Immunosensors
2.3. Types of Nanomaterials and Nanostructures in Biosensors and Assays
2.3.1. Nanowires and Nanowire Arrays
2.3.2. Quantum Dots
2.3.3. Carbon Nanotubes and Other Allotropes of Carbon
2.3.4. Metal Nanoparticles
Gold Nanoparticles (GNPs)
Other Metal Nanoparticles
2.3.5. Nano-Structured Conducting Polymers and Nanocomposites
3. Biomarkers as Analytes
Cancer type | Biomarkers | Biomarker type |
---|---|---|
Biomarkers in cancer diagnosis and prognosis | ||
Bladder | BTA | Bladder Tumor Antigen |
BAT | Mononucleotide marker of microsatellite instability (impaired DNA mismatch repair) in Bladder cancers | |
FDP | Fibrin degradation products | |
NMP 22 | Nuclear Matrix Protein | |
HA-Hase | Hyaluronic acid-Hyaluronidase (molecule-enzyme/protein) | |
BLCA-4 | Nuclear Matrix Protein | |
CYFRA 21-1 | Cytokeratin 19 intermediate filament fragment | |
Breast | CA125, CA15-3, CA27.29 | Cancer antigens/Mucin-like glycoproteins |
CEA | Glycoprotein/Carcinoembryonic protein | |
BRCA1/2 | Tumor suppressors | |
MUC-1 | Glycosylated protein | |
NY-BR-1 | Differentiation antigen | |
ING-1 | Tumor suppressor | |
Colon and pancreatic | CEA | Glycoprotein/carcinoembryonic protein |
CA19-9 | Sialylated lacto-N-fucopentaose II/Cancer antigen | |
CA24-2 | Sialylated Lewis carbohydrate | |
p53 | Nuclear phosphoprotein/Tumor suppressor | |
Esophagus carcinoma | SCC | Squamous Cell Carcinoma antigen |
Gastric carcinoma | CA72-4 | Cancer antigen/Mucin-like glycoproteins |
CA19-9 | Sialylated lacto-N-fucopentaose II/Cancer antigen | |
CEA | Glycoprotein/Carcinoembryonic protein | |
Biomarkers in cancer diagnosis and prognosis | ||
Leukemia | BCR, ABL, PML, BCL1/2, ETO | Chromosomal abnormalities or mutations caused by an error in cell division following meiosis or mitosis |
Liver | AFP | Glycoprotein/Fetal protein/Carcinoembryonic protein |
CEA | Glycoprotein/Carcinoembryonic protein | |
Lung | NY-ESO-1/ESO-1 | Cancer testis antigen |
CEA | Glycoprotein/carcinoembryonic protein | |
CA19-9 | Sialylated lacto-N-fucopentaose II/cancer antigen | |
SCC | Squamous Cell Carcinoma antigen | |
CYFRA 21-1 | Cytokeratin 19 intermediate filament fragment | |
NSE | Glycolytic enzyme | |
Melanoma | Tyrosinase | Oxidase enzyme |
NY-ESO-1/ESO-1 | Cancer testis antigen | |
Ovarian | CA-125 | Cancer antigen |
AFP | Glycoprotein/fetal protein/carcinoembryonic protein | |
hCG | Glycoprotein heterodimeric (α and β subunits) hormone | |
p53 | Nuclear phosphoprotein/Tumor suppressor | |
CEA | Glycoprotein/carcinoembryonic protein | |
Prostate | PSA | Serine protease |
PAP | Enzyme | |
Solid Tumors | EWS, WT1, ASPL, CHOP, FKHR, PAX3 | Chromosomal abnormalities or mutations caused by an error in cell division following meiosis or mitosis |
Testicular | AFP | Glycoprotein/fetal protein/carcinoembryonic protein |
β-hCG | β subunit of hCG a Glycoprotein heterodimeric hormone | |
CAGE-1 | Cancer testis antigen | |
ESO-1 | Cancer testis antigen | |
Trophoblastic | SCC | Squamous Cell Carcinoma antigen |
hCG | Glycoprotein heterodimeric (α and β subunits) hormone | |
Psychiatric Disorder | Biomarkers | Biomarker type |
Biomarkers used in other medical fields such as Psychiatry | ||
Psychotic symptoms | Cortisol (↑) | Steroid hormone/Glucocorticoid |
Major Depressive Disorder | Cortisol (↑) | – |
Post Traumatic Stress Disorder | Cortisol (↓) | – |
Schizophrenia | Cortisol (↑) | – |
Substance Abuse Disorder | Cortisol (↑) | – |
Stress (brief or sustained) | Cortisol (↑) | – |
Wilson Disease | Ceruloplasmin (↓) | Copper-binding protein/Oxidase enzyme |
Hyperthyroidism can present as: | – | – |
Mood disorder | Thyroid-stimulating hormone (TSH) (↓), FT4 (↑) | Glycoprotein hormone |
Biomarkers used in other medical fields such as Psychiatry | ||
Psychosis | TSH (↓), FT4 (↑) | – |
Delirium | TSH (↓), FT4 (↑) | – |
Hypothyroidism can present as: | – | – |
Fatigue | (TSH) (↑), FT4 (↓) | – |
Depression | (TSH) (↑), FT4 (↓) | – |
Memory impairment | (TSH) (↑), FT4 (↓) | – |
3.1. Cancer and Tumor Biomarkers
3.1.1. Cancer Antigen 125 (CA125)
3.1.2. Cancer Antigen (CA15-3)
3.1.3. Carcinoembryonic Antigen (CEA)
3.1.4. Prostate Specific Antigen (PSA)
3.2. Other Non-Cancer Antigen Biomarkers with Relevance in Other Medical Fields (Specifically Psychiatry and Behavioral Science)
3.2.1. Cortisol
3.2.2. Ceruloplasmin (Cp)
3.2.3. Thyroid-Stimulating Hormone (TSH)
- TSH ↑, FT4 ↓: hypothyroidism;
- TSH ↑, FT4 normal: subclinical hypothyroidism;
- TSH ↓, FT4 ↑: hyperthyroidism;
- TSH ↓, FT4 normal: subclinical hyperthyroidism;
- TSH ↓, FT4 ↓: nonthyroidal illness.
- TSH ↑, FT4 ↓: hypothyroidism;
- TSH ↑, FT4 normal: subclinical hypothyroidism (and check thyroid antibodies);
- TSH ↓, FT4 ↑: hyperthyroidism (thyroid-stimulating immunoglobin, thyroid peroxidase;
- (TPO) antibody, and TSH receptor antibody are checked);
- TSH ↓, FT4 normal: subclinical hyperthyroidism;
- TSH ↓, FT4 ↓: nonthyroidal illness.
3.2.4. Luteinizing Hormone (LH)
4. Nanomaterials and the Use of Nanotechnology for Clinical Diagnostic Purposes
Nanomaterials | Potential Applications in Cancer Detection | Ref. |
---|---|---|
Au-Ag-graphene hybrid nanosheets | Detection of alpha fetoprotein (AFP) | [118] |
Au-nanowires dopes Sol-Gel film | Detection of testosterone | [129] |
Au-TiO2 nanoparticles with Pt nanophere bioconjugates | Detection of carcinoembryotic antigen (CEA) in breast cancer | [88] |
[Co(bpy)3]3+ in MWNTs-Nafion composite film and Au NPs | Detection of ovarian and uterine cancer by CA125 biomarker | [107] |
Chitosan-CNTs-AuNPs nanocomposite film | Detection of carcinoembryotic antigen (CEA) | [130] |
CNTs and core-shell organosilica@chitosan nanospheres | Detection of ovarian cancer by CA125 biomarker | [109] |
Graphene | Detection of breast cancer by CA 15-3 biomarker | [110] |
Graphene sensor platform with colloidal carbon nanospheres | Detection of alpha fetoprotein (AFP) | [117] |
QD-based microfluidic protein chip | Multiplexed detection of CEA and AFP | [47] |
NanoAu-functionalized magnetic beads on Au NP-dispersed graphene | Detection of thyroid stimulating hormone (TSH) | [126] |
SWCNT conducting polymer-metal nanocomposites | Detection of cortisol | [120] |
SWNT forests | Detection of oral cancer biomarker Interleukin-6 (IL-6) | [131] |
Silica nanoparticles with silver nanoparticles | Detection of prostate specific antigen (PSA) | [116] |
5. Electrochemical Detection
5.1. Electrodes
5.2. Electrochemical Sensors
5.2.1. Amperometric Sensors
5.2.2. Voltammetric Sensors
Cyclic Voltammetry (CV)
Square-Wave Voltammetry (SWV)
5.2.3. Impedimetric Sensors
5.2.4. Conductometric Sensors
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Park, H.; Hwang, M.P.; Lee, K.H. Immunomagnetic Nanoparticle-Based Assays for Detection of Biomarkers. Int. J. Nanomed. 2013, 8, 4543–4552. [Google Scholar]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar]
- Dequaire, M.; Degrand, C.; Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 2000, 72, 5521–5528. [Google Scholar] [CrossRef]
- Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 2002, 4, 743–746. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem. 2003, 75, 2075–2079. [Google Scholar] [CrossRef]
- Chu, X.; Fu, X.; Chen, K.; Shen, G.L.; Yu, R.Q. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens. Bioelectron. 2005, 20, 1805–1812. [Google Scholar] [CrossRef]
- Zeng, J.; Wei, W.; Wu, L.; Liu, X.; Liu, K.; Li, Y. Fabrication of poly (toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J. Electroanal. Chem. 2006, 595, 152–160. [Google Scholar] [CrossRef]
- Iost, R.M.; Madurro, J.M.; Brito-Madurro, A.G.; Nantes, I.L.; Caseli, L.; Crespilho, F.N. Strategies of Nano-Manipulation for Application in Electrochemical Biosensors. Int. J. Electrochem. Sci. 2011, 6, 2965–2997. [Google Scholar]
- Kerman, K.; Saito, M.; Tamiya, E.; Yamamura, S.; Takamura, Y. Nanomaterial-based electrochemical biosensors for medical applications. Trends Anal. Chem. 2008, 27, 585–592. [Google Scholar] [CrossRef]
- Luz, R.A.S.; Iost, R.M.; Crespilho, F.N. Nanomaterials for Biosensors and Implantable Biodevices. In Nanobioelectrochemistry; Springer-Verlag: Berlin, Germany, 2013; pp. 27–48. [Google Scholar]
- Brown, K.R.; Fox, A.P.; Natan, M.J. Morphology-dependent electrochemistry of cytochrome C at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc. 1996, 118, 1154–1157. [Google Scholar]
- Maye, M.M.; Lou, Y.; Zhong, C.J. Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir 2000, 16, 7520–7523. [Google Scholar] [CrossRef]
- Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. Plugging into enzymes: Nanowiring of redox enzymes by a gold nanoparticle. Science 2003, 299, 1877–1881. [Google Scholar]
- Chen, J.; Tang, J.; Ju, H. A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 2006, 27, 2313–2321. [Google Scholar] [CrossRef]
- Njagi, J.; Andreescu, S. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Biosens. Bioelectron. 2007, 23, 168–175. [Google Scholar] [CrossRef]
- Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 2001, 222, 427–437. [Google Scholar]
- Xu, Q.; Zhao, Y.; Xu, J.Z.; Zhu, J.J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuat. B Chem. 2006, 114, 379–386. [Google Scholar] [CrossRef]
- Shen, J.; Dudik, L.; Liu, C.C. An Iridium Nanoparticles Dispersed Carbon Based Thick Film Electrochemical Biosensor and Its Application for a Single Use, Disposable Glucose Biosensor. Sens. Actuat. B Chem. 2007, 125, 106–113. [Google Scholar] [CrossRef]
- Lai, G.; Yan, F.; Wu, J.; Leng, C.; Ju, H. Ultrasensitive Multiplexed Immunoassay with Electrochemical Stripping Analysis of Silver Nanoparticles Catalytically Deposited by Gold Nanoparticles and Enzymatic Reaction. Anal. Chem. 2011, 83, 2726–2732. [Google Scholar] [CrossRef]
- Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano 2010, 4, 959–3968. [Google Scholar]
- Mubeen, S.; Zhang, T.; Yoo, B.; Deshusses, M.A.; Myung, N. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. J. Phys. Chem. C 2007, 111, 6321–6327. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ghalkhani, M.; Adeli, M.; Amini, M.K. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine. Biosens. Bioelectron. 2009, 24, 3235–3241. [Google Scholar] [CrossRef]
- Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron. 2008, 24, 676–683. [Google Scholar] [CrossRef]
- Ping, J.; Ru, S.; Fan, K.; Wu, J.; Ying, Y. Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim. Acta 2010, 171, 117–123. [Google Scholar] [CrossRef]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef]
- Johal, M.S. Understanding Nanomaterials, 1st ed.; CRC Press by Taylor and Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dey, R.S.; Raj, C.R. Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material. J. Phys. Chem. C 2010, 114, 21427–21433. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.Q. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22, 2898–2905. [Google Scholar]
- Trilling, A.K.; Beekwilder, J.; Zuilhof, H. Antibody orientation on biosensor surfaces: A minireview. Analyst 2013, 138, 1619–1627. [Google Scholar]
- Prieto-Simón, B.; Saint, C.; Voelcker, N.H. Electrochemical Biosensors Featuring Oriented Antibody Immobilization via Electrografted and Self-Assembled Hydrazide Chemistry. Anal. Chem. 2014, 86, 1422–1429. [Google Scholar] [CrossRef]
- Ericsson, E. Biosensor Surface Chemistry for Oriented Protein Immobilization and Biochip Patterning. Licentiate Thesis, Linköping University, Linköping, Sweden, February 2013. [Google Scholar]
- National Nanotechnology Initiative, February 2000. Available online: http://www.whitehouse.gov/files/documents/ostp/NSTC%20Reports/NNI2000.pdf (accessed on 12 June 2014).
- 2014 National Nanotechnology Initiative (NNI) Strategic Plan, 28 February 2014. Available online: http://www.nano.gov/node/1113 (accessed on 11 June 2014).
- Loux, N.T.; Su, Y.S.; Hassan, S.M. Issues in assessing environmental exposures to manufactured nanomaterials. Int. J. Environ. Res. Public Health 2011, 8, 3562–3578. [Google Scholar] [CrossRef]
- Overbeek, J.Th.G. Colloids, a fascinating subject: Introductory lecture. In Colloidal Dispersions; Goodwin, J.W., Ed.; Royal Society of Chemistry: London, UK, 1982. [Google Scholar]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar]
- Bertholf, R.L.; Bowman, M.A. Microbeads, magnets, and magic: The enchanting science of immunochemistry. Ann. Clin. Lab. Sci. 1996, 26, 377–388. [Google Scholar]
- Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron. 2011, 30, 93–99. [Google Scholar]
- Sun, K.; Ramgir, N.; Bhansali, S. An immunoelectrochemical sensor for salivary cortisol measurement. Sens. Actuat. B Chem. 2008, 133, 533–537. [Google Scholar]
- Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L.F.; Schmidt, M.M.; Wittrup, K.D.; Bawendi, M.G.; Ting, A.Y. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 2008, 5, 397–399. [Google Scholar] [CrossRef]
- Ray, S.; Reddy, P.J.; Choudhary, S.; Raghu, D.; Srivastava, S. Emerging nanoproteomics approaches for disease biomarker detection: A current perspective. J. Proteom. 2011, 74, 2660–2681. [Google Scholar]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organicdyes as fluorescent labels. Nat. Methods 2008, 5, 763–765. [Google Scholar]
- Krejcova, L.; Nejdl, L.; Hynek, D.; Krizkova, S.; Kopel, P.; Adam, V.; Kizek, R. Beads-Based Electrochemical Assay for the Detection of Influenza Hemagglutinin Labeled with CdTe Quantum Dots. Molecules 2013, 18, 15573–15586. [Google Scholar]
- Miller, S.A.; Hiatt, L.A.; Keil, R.G.; Wright, D.W.; Cliffel, D.E. Multifunctional nanoparticles as simulants for a gravimetric immunoassay. Anal. Bioanal. Chem. 2011, 399, 1021–1029. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.P.; Zhang, Z.L.; He, R.L.; Lin, Y.; Xie, M.; Pang, D.W. Robust and highly sensitive fluorescence approach for Point-of-Care virus detection based on immunomagnetic separation. Anal. Chem. 2012, 84, 2358–2365. [Google Scholar] [CrossRef]
- Rzigalinski, B.A.; Strobl, J.S. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots. Toxicol. Appl. Pharmacol. 2009, 238, 280–288. [Google Scholar] [CrossRef]
- Hu, M.; Yan, J.; He, Y.; Lu, H.; Weng, L.; Song, S.; Fan, C.; Wang, L. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2009, 4, 488–494. [Google Scholar]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Treacy, M.M.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Carbon nanotube-based sensor. In Nanomaterials for Biosensors; Kumar, C.S.S.R. (Ed.) Wiley-VCH: Weinheim, Germany, 2007; pp. 27–89.
- Fulekar, M.H. Nanotechnology: Importance and Applications; I.K. International Pvt Ltd.: New Delhi, India, 2010. [Google Scholar]
- Bell, M.S.; Teo, K.B.K.; Lacerda, R.G.; Milne, W.I.; Hash, D.B.; Meyyappan, M. Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl. Chem. 2006, 78, 1117–1125. [Google Scholar]
- Pan, Z.W.; Xie, S.S.; Chang, B.H.; Sun, L.F.; Zhou, W.Y.; Wang, G. Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 1999, 299, 97–102. [Google Scholar]
- Sun, L.F.; Mao, J.M.; Pan, Z.W.; Chang, B.H.; Zhou, W.Y.; Wang, G.; Qian, L.X.; Xie, S.S. Growth of straight nanotubes with cobalt-nickel catalyst by chemical vapor deposition. Appl. Phys. Lett. 1999, 74, 644–646. [Google Scholar]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; de laChapelle, M.L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758. [Google Scholar]
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.J.; Petit, P.; Robert, C.H.; Xu, C.H.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483–487. [Google Scholar]
- Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Human, C.B.; Rodriguez-Macias, F.J. Appl. Phys. A 1998, 67, 29–37.
- Rassaei, L. Assembly and Characterization of Nanomaterials into Thin Film Electroanalysis. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, July 2008. [Google Scholar]
- Ahammad, A.J.S.; Lee, J.-J.; Rahman, A. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef]
- Varadan, V.K.; Kalarickaparambil, J.V.; Gopalakrishnan, S. Smart Material Systems and MEMS: Design and Development Methodologies; John Wiley and Sons: West Sussex, UK, 2006. [Google Scholar]
- Chou, A.; Bocking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem. Commun. 2005, 7, 842–844. [Google Scholar]
- Liu, J.; Chou, A.; Rahmat, W.; Paddon-Row, M.N.; Gooding, J.J. Achieving direct electrical connection to glucose oxidase using aligned singled walled carbon nanotube arrays. Electroanal 2005, 17, 38–46. [Google Scholar] [CrossRef]
- Gooding, J.J.; Chou, A.; Liu, J.; Losic, D.; Shapter, J.G.; Hibbert, D.B. The effects of the lengths and orientations of signle-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochem. Commun. 2007, 9, 1677–1683. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar]
- Du, P.; Liu, S.; Wu, P.; Cai, C. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta 2007, 52, 6534–6547. [Google Scholar] [CrossRef]
- Sato, N.; Okuma, H. Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications. Sens. Actuat. B Chem. 2008, 129, 188–194. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Jan, M.R. Ultrasensitive Electrical Biosensing of Proteins and DNA: Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events. J. Am. Chem. Soc. 2004, 126, 3010–3011. [Google Scholar] [CrossRef]
- Santosh, P.; Manesh, K.M.; Gopalan, A.; Lee, K.P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine-fabrication and performance. Sens. Actuat. B Chem. 2007, 125, 92–99. [Google Scholar] [CrossRef]
- Star, A.; Gabriel, J.C.P.; Bradley, K.; Gruner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–464. [Google Scholar]
- Bradley, K.; Briman, M.; Star, A.; Gruner, G. Charge transfer from adsorbed proteins. Nano Lett. 2004, 4, 253–256. [Google Scholar] [CrossRef]
- Okuno, J.; Maehashi, K.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron. 2007, 22, 2377–2381. [Google Scholar] [CrossRef]
- Zhao, Q.; Gan, Z.; Zhuang, Q. Electrochemical sensors based on carbon nanotubes. Electroanal 2002, 14, 1609–1613. [Google Scholar] [CrossRef]
- Boussaad, S.; Tao, N.J.; Zhang, R.; Hopson, T.; Nagahara, L.A. In situ detection of Cytochrome C adsorption with single walled carbon nanotube device. Chem. Commun. 2003, 13, 1502–1503. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Lia, Y.; Schluesenerb, H.J.; Xua, S. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar]
- Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute toxicity. Small 2005, 1, 325–327. [Google Scholar]
- Takahara, Y.K.; Ikeda, S.; Ishino, S.; Tachi, K.; Ikeue, K.; Sakata, T.; Ohtani, B. Asymmetrically modified silica particles: A simple particulate surfactant for stabilization of oil droplets in water. J. Am. Chem. Soc. 2005, 127, 6271–6275. [Google Scholar]
- Cui, R.; Liu, C.; Shen, J.; Gao, D.; Zhu, J.J.; Chen, H.Y. Gold nanoparticle–colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 2008, 18, 2197–2204. [Google Scholar]
- Li, F.; Feng, Y.; Wang, Z.; Yang, L.; Zhuo, L.; Tang, B. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite. Biosens. Bioelectron. 2010, 25, 2244–2248. [Google Scholar] [CrossRef]
- Baioni, A.P.; Vidotti, M.; Fiorito, P.A.; Córdoba de Torresi, S.I. Copper hexacyanoferrate nanoparticles modified electrodes: A versatile tool for biosensors. J. Electroanal. Chem. 2008, 622, 219–224. [Google Scholar]
- Li, Z.; Wang, X.; Wen, G.; Shuang, S.; Dong, C.; Paau, M.C.; Choi, M.M. Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor. Biosens. Bioelectron. 2011, 26, 4619–4623. [Google Scholar] [CrossRef]
- Salimi, A.; Hallaj, R.; Soltanian, S. Fabrication of a Sensitive Cholesterol Biosensor Based on Cobalt-oxide Nanostructures Electrodeposited onto Glassy Carbon Electrode. Electroanal 2009, 21, 2693–2700. [Google Scholar]
- Liu, C.Y.; Hu, J.M. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron. 2009, 24, 2149–2154. [Google Scholar] [CrossRef]
- Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar]
- Yang, H.; Yuan, R.; Chai, Y.; Mao, L.; Su, H.; Jiang, W.; Liang, M. Electrochemical immunosensor for detecting carcinoembryonic antigen using hollow Pt nanospheres-labeled multiple enzyme-linked antibodies as labels for signal amplification. Biochem. Eng. J. 2011, 56, 116–124. [Google Scholar] [CrossRef]
- Liang, H.P.; Zhang, H.M.; Hu, J.S.; Guo, Y.G.; Wan, L.J.; Bai, C.L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Ger. Edit. 2004, 116, 1566–1569. [Google Scholar]
- Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical sensors based on organic conjugated polymers. Sensors 2008, 8, 118–141. [Google Scholar]
- Park, S.-M. Electrochemistry of conjugated polymers. In Handbook of Organic Conductive Molecules and Polymers; Nalwa, H.S., Ed.; Wiley: Chichester, UK, 1997; Volume 3, pp. 429–469. [Google Scholar]
- Guiseppi-Elie, A.; Wallace, G.G.; Matsue, T. Chemical and biological sensors based on electrically conducting polymers. In Handbook of Conducting Polymers, 2nd ed.; Skotheim, T.A., Elsenbaumer, R., Reynolds, J.R., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 963–991. [Google Scholar]
- Arbizzani, C.; Mastragostino, M.; Scrosati, B. Conductive polymers: transport, photophysics and applications. In Handbook of Organic Conductive Molecules and Polymers; Nalwa, H.S., Ed.; Wiley: Chichester, UK, 1997; Volume 4, pp. 595–619. [Google Scholar]
- Paul, E.W.; Ricco, A.J.; Wrighton, M.S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 1985, 89, 1441–1447. [Google Scholar] [CrossRef]
- Ahuja, T.; Kumar, D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuat. B Chem. 2009, 136, 275–286. [Google Scholar] [CrossRef]
- Lassalle, N.; Mailley, P.; Vieil, E.; Livache, T.; Roget, A.; Correia, J.P.; Abrantes, L.M. Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA: Preliminary study of real time monitoring by in situ techniques. J. Electroanal. Chem. 2001, 509, 48–57. [Google Scholar] [CrossRef]
- Ullah, M.F.; Aatif, M. The footprints of cancer development: Cancer biomarkers. Cancer Treat. Rev. 2009, 35, 193–200. [Google Scholar] [CrossRef]
- Diaconu, I.; Cristea, C.; Hârceagă, V.; Marrazza, G.; Berindan-Neagoe, I.; Săndulescu, R. Electrochemical immunosensors in breast and ovarian cancer. Clin. Chim. Acta 2013, 425, 128–138. [Google Scholar] [CrossRef]
- Lee, P.; Pincus, M.R.; McPherson, R.A. Diagnosis and management of cancer using serologic tumor markers. In Henry’s Clinical Diagnosis and Management by Laboratory Methods, 21st ed.; McPherson, R.A., Pincus, M.R., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2007. [Google Scholar]
- Jacobson, S.A. Laboratory tests. In Laboratory Medicine in Psychiatry and Behavioral Science; American Psychiatric Publishing: Arlington, VA, USA, 2012. [Google Scholar]
- Yun, Y.H.; Eteshola, E.; Bhattacharya, A.; Dong, Z.; Shim, J.S.; Conforti, L.; Kim, D.; Schulz, M.J.; Ahn, C.H.; Watts, N. Tiny medicine: Nanomaterial-based biosensors. Sensors 2009, 9, 9275–9299. [Google Scholar] [CrossRef]
- Liang, S.; Chan, D.W. Enzymes and related proteins as cancer biomarkers: A proteomic approach. Clin. Chim. Acta 2007, 381, 93–97. [Google Scholar] [CrossRef]
- Rasooly, A.; Jacobson, J. Development of biosensors for cancer clinical testing. Biosens. Bioelectron. 2006, 21, 1851–1858. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Whitehead, C.M.; Rubatt, J.M.; Cheek, R.L.; Groelke, J.; He, Q.; Malinowski, D.P.; Fischer, T.J.; Berchuck, A. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol. Oncol. 2008, 110, 374–382. [Google Scholar] [CrossRef]
- Bohunicky, B.; Mousa, S.A. Biosensors: The new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 2011, 4, 1–10. [Google Scholar]
- Bast, R.C.; Feeney, M.; Lazarus, H.; Nadler, L.M.; Colvin, R.B.; Knapp, R.C. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 1981, 68, 1331–1337. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Min, L.; Li, W.; Xu, Y. Electrochemical sensing platform based on tris (2,2′-bipyridyl) cobalt (III) and multiwall carbon nanotubes-Nafion composite for immunoassay of carcinoma antigen-125. Electrochim. Acta 2009, 54, 7242–7247. [Google Scholar] [CrossRef]
- Fu, X.H. Electrochemical Immunoassay for Carbohydrate Antigen-125 Based on Polythionine and Gold Hollow Microspheres Modified Glassy Carbon Electrodes. Electroanal. 2007, 19, 1831–1839. [Google Scholar] [CrossRef]
- Li, W.; Yuan, R.; Chai, Y.; Chen, S. Reagentless amperometric cancer antigen 15-3 immunosensor based on enzyme-mediated direct electrochemistry. Biosens. Bioelectron. 2010, 25, 2548–2552. [Google Scholar]
- Li, H.; He, J.; Li, S.; Turner, A.P. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosens. Bioelectron. 2013, 43, 25–29. [Google Scholar]
- Taleat, Z.; Cristea, C.; Marrazza, G.; Mazloum-Ardakani, M.; Săndulescu, R. Electrochemical Immunoassay Based on Aptamer-Protein Interaction and Functionalized Polymer for Cancer Biomarker Detection. J. Electroanal. Chem. 2014, 717–718, 119–124. [Google Scholar] [CrossRef]
- Yan, J.L.; Wang, G.L.; Majima, K.; Matsumoto, K. Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal. Chem. 2001, 73, 1869–1876. [Google Scholar] [CrossRef]
- Hefta, L.J.F.; Neumaier, M.; Shively, J.E. Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs. Immunotechnology 1998, 4, 49–57. [Google Scholar]
- Cioffi, M.; Vietri, M.T.; Gazzerro, P.; Magnetta, R.; D’Auria, A.; Durante, A.; Nola, E.; Puca, G.A.; Molinari, A.M. Serum anti-53 antibodies in lung cancer: Comparison with established tumor markers. Lung Cancer 2001, 33, 163–169. [Google Scholar]
- Gao, X.; Zhang, Y.; Chen, H.; Chen, Z.; Lin, X. Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal. Biochem. 2011, 414, 70–76. [Google Scholar]
- Wang, H.; Zhang, Y.; Yu, H.; Wu, D.; Ma, H.; Li, H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal. Biochem. 2013, 434, 123–127. [Google Scholar]
- Du, D.; Zou, Z.; Shin, Y.; Wang, J.; Wu, H.; Engelhard, M.H.; Liu, J.; Aksay, I.A.; Lin, Y. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multi-Enzyme Functionalized Carbon Nanospheres. Anal. Chem. 2010, 82, 2989–2995. [Google Scholar]
- Su, B.; Tang, D.; Li, Q.; Tang, J.; Chen, G. Gold–silver–graphene hybrid nanosheets-based sensors for sensitive amperometric immunoassay of alpha-fetoprotein using nanogold-enclosed titania nanoparticles as labels. Anal. Chim. Acta 2011, 692, 116–124. [Google Scholar] [CrossRef]
- Tang, J.; Huang, J.; Su, B.; Chen, H.; Tang, D. Sandwich-type conductometric immunoassay of alpha-fetoprotein in human serum using carbon nanoparticles as labels. Biochem. Eng. J. 2011, 53, 223–238. [Google Scholar] [CrossRef]
- Tlili, C.; Myung, N.V.; Shetty, V.; Mulchandani, A. Label-free, chemiresistor immunosensor for stress biomarker cortisol in saliva. Biosens. Bioelectron. 2011, 26, 4382–4386. [Google Scholar]
- Arya, S.K.; Dey, A.; Bhansali, S. Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosens. Bioelectron. 2011, 28, 166–173. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Matsuda, Y.; Sasaki, S.; Sasaki, M.; Kadoma, Y.; Imai, Y.; Shetty, V. Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosens. Bioelectron. 2013, 41, 186–191. [Google Scholar] [CrossRef]
- Aardal, E.; Holm, A.C. Cortisol in saliva-reference ranges and relation to cortisol in serum. Clin. Chem. Lab. Med. 1995, 33, 927–932. [Google Scholar]
- Ojeda, I.; Moreno‐Guzmán, M.; González‐Cortés, A.; Yáñez‐Sedeño, P.; Pingarrón, J.M. Electrochemical Magnetic Immunosensors for the Determination of Ceruloplasmin. Electroanal 2013, 25, 2166–2174. [Google Scholar] [CrossRef]
- Garcinuño, B.; Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Amperometric immunosensor for the determination of ceruloplasmin in human serum and urine based on covalent binding to carbon nanotubes-modified screen-printed electrodes. Talanta 2014, 118, 61–67. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, D.; Liu, B.; Cui, Y.; Chen, H.; Chen, G. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal. Chim. Acta 2012, 711, 17–23. [Google Scholar] [CrossRef]
- Lillie, G.; Payne, P.; Vadgama, P. Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing. Sens. Actuat. B 2001, 78, 249–256. [Google Scholar] [CrossRef]
- Farace, G.; Lillie, G.; Hianik, T.; Payne, P.; Vadgama, P. Reagentless biosensing using electrochemical impedance spectroscopy. Bioelectrochemistry 2002, 55, 1–3. [Google Scholar]
- Liang, K.Z.; Qi, J.S.; Mu, W.J.; Chen, Z.G. Biomolecules/gold nanowires-doped sol-gel film for label-free electrochemical immunoassay of testosterone. J. Biochem.Bioph. Meth. 2008, 70, 1156–116. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Wu, Q.; Chen, H.; Chen, Z.; Lin, X. One step electrochemically deposited nanocomposite film of chitosan-carbon nanotubes–gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta 2011, 85, 1980–1985. [Google Scholar] [CrossRef]
- Malhotra, R.; Patel, V.; Vaqué, J.P.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010, 82, 3118–3123. [Google Scholar] [CrossRef]
- Bauer, C.G.; Eremenko, A.V.; Ehrentreich-Forster, E.; Bier, F.F.; Makower, A.; Halsall, H.B.; Heineman, W.R.; Scheller, F.W. Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid. Anal. Chem. 1996, 68, 2453–2458. [Google Scholar] [CrossRef]
- Jenkins, S.H.; Heineman, W.R.; Halsall, H.B. Extending the detection limit of solid-phase electrochemical enzyme immunoassay to the attomole level. Anal. Biochem. 1988, 168, 292–299. [Google Scholar]
- Wightman, R.M.; Amatore, C.; Engstrom, R.C.; Hale, P.D.; Kristensen, E.W.; Kuhr, W.G.; May, L.J. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 1988, 25, 513–523. [Google Scholar] [CrossRef]
- Satoh, H.; Okabe, S.; Norimatsu, N.; Watanabe, Y. Significance of substrate C/N ration on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 2000, 41, 317–321. [Google Scholar]
- Ouvry, A.; Cachon, R.; Divies, C. Application of microelectrode technique to measure pH and oxidoreduction potential gradients in gelled systems as model food. Biotech. Lett. 2001, 23, 1373–1377. [Google Scholar] [CrossRef]
- Farrell, S.; Ronkainen-Matsuno, N.J.; Halsall, H.B.; Heineman, W.R. Bead-based immunoassays with microelectrode detection. Anal. Bioanal. Chem. 2004, 379, 358–367. [Google Scholar] [CrossRef]
- Heller, I.; Kong, J.; Heering, H.A.; Williams, K.A.; Lemay, S.G.; Dekker, C. Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano Lett. 2005, 5, 137–142. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Q.; Wang, M.; Xu, S.; Zhou, Y.; Zu, X.-X. The fabrication of nanoelectrodes based on a single carbon nanotube. Nanotechnology 2009, 20. [Google Scholar] [CrossRef]
- Yeh, J.I.; Shi, H. Nanoelectrodes for biological measurements. WIREs Nanomed. Nanobiotechnol. 2010, 2, 176–188. [Google Scholar] [CrossRef]
- Njagi, J.; Chernov, M.M.; Leiter, J.C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996. [Google Scholar] [CrossRef]
- Shi, H.; Tian, X.; Nel, A.E.; Yeh, J.I. Part II: Coordinated biosensors-development of enhanced nanobiosensors for biological and medical applications. Nanomed. UK 2007, 2, 599–614. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Dong, P.; Wang, C.; Wang, J.; Liu, Y.; Chen, J. Electrochemical Biosensor Based on Interdigitated Electrodes for Determination of Thyroid Stimulating Hormone. Int. J. Electrochem. Sci. 2014, 9, 12–21. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principles of Instrumental Analysis, 5th ed.; Thomson Learning: Belmont, CA, USA, 1997; pp. 563–669. [Google Scholar]
- Suni, I.I. Impedance Methods for Electrochemical Sensors Using Nanomaterials. Trends. Anal. Chem. 2008, 27, 604–611. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Wu, X.; Jiang, H. Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochem. Eng. J. 2006, 32, 211–217. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Chen, P.; Zhong, Z. Enhanced conductometric immunoassay for hepatitis B surface antigen using double-codified nanogold particles as labels. Biochem. Eng. J. 2009, 45, 107–112. [Google Scholar] [CrossRef]
- Muhammad-Tahir, Z.; Alocilja, E.C. Conductometric Immunosensor for Biosecurity. J. Biosens. Bioelectron. 2003, 18, 813–819. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ronkainen, N.J.; Okon, S.L. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. Materials 2014, 7, 4669-4709. https://doi.org/10.3390/ma7064669
Ronkainen NJ, Okon SL. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. Materials. 2014; 7(6):4669-4709. https://doi.org/10.3390/ma7064669
Chicago/Turabian StyleRonkainen, Niina J., and Stanley L. Okon. 2014. "Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers" Materials 7, no. 6: 4669-4709. https://doi.org/10.3390/ma7064669
APA StyleRonkainen, N. J., & Okon, S. L. (2014). Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. Materials, 7(6), 4669-4709. https://doi.org/10.3390/ma7064669