Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of xAgI + (1−x)AgPO3/PCF Samples
2.2. Optical Spectra Measurements
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Transmission Spectra of AgPO3 and xAgI + (1−x)AgPO3/LMA-10 Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russell, P.S.J. Photonic band gap guidance in optical fibers. Science 1998, 282, 1476–1478. [Google Scholar]
- Abeeluck, A.K.; Litchinitser, N.M.; Headley, C.; Eggleton, B.J. Analysis of spectral characteristics of photonic bandgap waveguides. Opt. Express 2002, 10, 1320–1333. [Google Scholar]
- Lousteau, J.; Scarpignato, G.; Athanasiou, G.; Mura, E.; Boetti, N.; Olivero, M.; Benson, T.; Sewell, P.; Abrate, S.; Milanese, D. Photonic bandgap confinement in an all-solid tellurite-glass photonic crystal fiber. Opt. Lett. 2012, 37, 4922–4924. [Google Scholar]
- Granzow, N.; Uebel, P.; Schmidt, M.A.; Tverjanovich, A.S.; Wondraczek, L.; Russell, P.S. Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers. Opt. Lett. 2011, 36, 2432–2434. [Google Scholar]
- Markos, C.; Yannopoulos, S.N.; Vlachos, K. Chalcogenide glass layers in silica photonic crystal fibers. Opt. Express 2012, 20, 14814–14824. [Google Scholar]
- Konidakis, I.; Zito, G.; Pissadakis, S. Photosensitive, all-glass AgPO3/silica photonic bandgap fiber. Opt. Lett. 2012, 37, 2499–2501. [Google Scholar]
- Konidakis, I.; Zito, G.; Pissadakis, S. Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber. Opt. Lett. 2014, 39, 3374–3377. [Google Scholar]
- Spittel, R.; Kobelke, J.; Hoh, D.; Just, F.; Schuster, K.; Schwuchow, A.; Jahn, F.; Kirchhof, J.; Jäger, M.; Bartelt, H. Arsenic chalcogenide filled photonic crystal fibers. J. Non-Cryst. Solids 2013, 377, 231–235. [Google Scholar] [CrossRef]
- Kreibig, U. Electronic properties of small silver particles optical-constants and their temperature dependence. J. Phys. F Metal Phys. 1974, 4, 999–1014. [Google Scholar]
- Sonnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J. Plasmon resonances in large noble-metal clusters. New J. Phys. 2002, 4. [Google Scholar] [CrossRef]
- Noginova, N.; Yakim, A.V.; Soimo, J.; Gu, L.; Noginov, M.A. Light-to-current and current-to-light coupling in plasmonic systems. Phys. Rev. B 2011, 84, 35447–35451. [Google Scholar]
- Ingram, M.D. Ionic-conductivity in glass. Phys. Chem. Glasses 1987, 28, 215–234. [Google Scholar]
- Roling, B.; Ingram, M.D.; Lange, M.; Funke, K. Role of AgI for ionic conduction in AgI-AgPO3 glasses. Phys. Rev. B 1997, 56, 13619–13622. [Google Scholar]
- Sidebottom, D.L. Influence of cation constriction on the ac conductivity dispersion in metaphosphate glasses. Phys. Rev. B 2000, 61, 14507–14516. [Google Scholar]
- Bhattacharya, S.; Dutta, D.; Ghosh, A. Dynamics of Ag+ ions in Ag2S-doped superionic AgPO3 glasses. Phys. Rev. B 2006, 73, 104201–104206. [Google Scholar]
- Carini, G.; Cutroni, M.; Fontana, A.; Mariotto, G.; Rocca, F. Inelastic light-scattering in superionic glasses (AgI)x(Ag2O Nb2O3)1−x. Phys. Rev. B 1984, 29, 3567–3572. [Google Scholar]
- Rousselot, C.; Malugani, J.P.; Mercier, R.; Tachez, M.; Chieux, P.; Pappin, A.J.; Ingram, M.D. The origins of neutron-scattering prepeaks and conductivity enhancement in AgI-containing glasses. Solid State Ion. 1995, 78, 211–221. [Google Scholar]
- Markos, C.; Antonopoulos, G.; Kakarantzas, G. Broadband guidance in a hollow-core photonic crystal fiber with polymer-filled cladding. Photonics Technol. Lett. IEEE 2013, 25, 2003–2006. [Google Scholar]
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random distributed feedback fibre laser. Nat. Photonics 2010, 4, 231–235. [Google Scholar]
- Mookherjea, S.; Park, J.S.; Yang, S.H.; Bandaru, P.R. Localization in silicon nanophotonic slow-light waveguides. Nat. Photonics 2008, 2, 90–93. [Google Scholar]
- Konidakis, I.; Varsamis, C.P.E.; Kamitsos, E.I. Effect of synthesis method on the structure and properties of AgPO3-based glasses. J. Non-Cryst. Solids 2011, 357, 2684–2689. [Google Scholar] [CrossRef]
- Konidakis, I.; Palles, D.; Varsamis, C.P.E.; Kamitsos, E.I. Influence of synthesis conditions on melt contamination in AgI-AgPO3 fast ion conducting glasses and structure-property correlations. Unpublished work. 2014. [Google Scholar]
- Image J Software. Available online: http://imagej.nih.gov/ij/ (accessed on 7 January 2014).
- Benassi, P.; Fontana, A.; Rodrigues, P.A.M. Light-scattering in superionic glasses (AgI)x(AgPO3)1−x brillouin and raman-scattering. Phys. Rev. B 1991, 43, 1756–1762. [Google Scholar]
- Argyros, A.; Birks, T.A.; Leon-Saval, S.G.; Cordeiro, C.M.B.; Russell, P.S. Guidance properties of low-contrast photonic bandgap fibres. Opt. Express 2005, 13, 2503–2511. [Google Scholar]
- Feced, R.; Zervas, M.N. Effects of random phase and amplitude errors in optical fiber Bragg gratings. Lightwave Technol. 2000, 18, 90–101. [Google Scholar]
- Hughes, S.; Ramunno, L.; Young, J.F.; Sipe, J.E. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef]
- Fokoua, E.N.; Poletti, F.; Richardson, D.J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Opt. Express 2012, 20, 20980–20991. [Google Scholar]
- Patterson, M.; Hughes, S.; Schulz, S.; Beggs, D.M.; White, T.P.; O’Faolain, L.; Krauss, T.F. Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law. Phys. Rev. B 2009, 80, 195305–195310. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: Berlin, Germany, 1998. [Google Scholar]
- Tomasi, C.; Mustarelli, P.; Magistris, A.; Ricci, O. Devitrification and phase equilibria in the xAgI (1−x)AgPO3 system. J. Phys. Chem. B 2002, 106, 2962–2966. [Google Scholar]
- Karbasi, S.; Mirr, C.R.; Yarandi, P.G.; Frazier, R.J.; Koch, K.W.; Mafi, A. Observation of transverse Anderson localization in an optical fiber. Opt. Lett. 2012, 37, 2304–2306. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Konidakis, I.; Pissadakis, S. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses. Materials 2014, 7, 5735-5745. https://doi.org/10.3390/ma7085735
Konidakis I, Pissadakis S. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses. Materials. 2014; 7(8):5735-5745. https://doi.org/10.3390/ma7085735
Chicago/Turabian StyleKonidakis, Ioannis, and Stavros Pissadakis. 2014. "Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses" Materials 7, no. 8: 5735-5745. https://doi.org/10.3390/ma7085735
APA StyleKonidakis, I., & Pissadakis, S. (2014). Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses. Materials, 7(8), 5735-5745. https://doi.org/10.3390/ma7085735