Surface Chloride Concentration of Concrete under Shallow Immersion Conditions
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
Materials | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | K2O | LOI |
---|---|---|---|---|---|---|---|---|
Cement | 64.67 | 18.59 | 4.62 | 4.17 | 2.35 | 3.32 | 0.92 | 1.03 |
Fly ash | 4.74 | 62.32 | 23.95 | 1.33 | 2.04 | 1.25 | 0.76 | 3.12 |
2.2. Experiments
Mix | w/b | Water | Cement | Fly Ash | Sand | Gravel |
---|---|---|---|---|---|---|
PC53 | 0.53 | 201 | 379 | 0 | 720 | 1079 |
PC47 | 0.47 | 192 | 409 | 0 | 720 | 1079 |
PC38 | 0.38 | 175 | 461 | 0 | 720 | 1079 |
FC47-15 | 0.47 | 191 | 346 | 61 | 715 | 1072 |
FC47-30 | 0.47 | 190 | 283 | 121 | 711 | 1065 |
3. Results
3.1. Influence of w/c on the Surface Chloride Concentration
3.2. Influence of Fly Ash on the Surface Chloride Concentration
3.3. SEM
3.4. Discussion
4. Conclusions
- (1)
- Under real service conditions, the surface chloride concentration of concrete structures is not a constant, but a function of time.
- (2)
- In a concrete under shallow immersion, the surface chloride concentration increases with the increase of the immersion duration.
- (3)
- In plain cement concretes, the higher the w/c, the higher the surface chloride concentration. However, the difference becomes smaller with the increasing immersion durations.
- (4)
- The incorporation of fly ash leads to higher surface chloride concentration as compared with the reference plain cement concrete with the same w/b.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, H.; Hou, D.; Lu, Y.; Li, Z. Two-scale modeling of the capillary network in hydrated cement paste. Constr. Build. Mater. 2014, 64, 11–21. [Google Scholar] [CrossRef]
- Ma, H.; Li, Z. Multi-aggregate approach for modeling interfacial transition zone in concrete. ACI Mater. J. 2014, 111, 189–200. [Google Scholar]
- Al Mutlaq, F.M.; Page, C.L. Effects of electric arc furnace dust on susceptibility of steel to corrosion in chloride-contaminated concrete. Constr. Build. Mater. 2013, 39, 60–64. [Google Scholar]
- Poupard, O.; Aït-Mokhtar, A.; Dumargue, P. Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy. Cem. Concr. Res. 2004, 34, 991–1000. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A.; Shinozuka, M. Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite-element framework. Cem. Concr. Res. 2012, 42, 365–376. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, C.; de Schutter, G.; Audenaert, K.; Deng, D. Chloride binding of cement-based materials subjected to external chloride environment: A review. Constr. Build. Mater. 2009, 23, 1–13. [Google Scholar] [CrossRef]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical chloride content in reinforced concrete: A review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar]
- Glass, G.K.; Buenfeld, N.R. The presentation of the chloride for corrosion of steel in threshold concrete. Corros. Sci. 1997, 39, 1001–1013. [Google Scholar] [CrossRef]
- Vaysburd, A.M.; Emmons, P.H. How to make today’s repairs durable for tomorrow—Corrosion protection in concrete repair. Constr. Build. Mater. 2000, 14, 189–197. [Google Scholar] [CrossRef]
- Horgnies, M.; Willieme, P.; Gabet, O. Influence of the surface properties of concrete on the adhesion of coating: Characterization of the interface by peel test and FT-IR spectroscopy. Prog. Org. Coat. 2011, 72, 360–379. [Google Scholar] [CrossRef]
- Amey, S.L.; Johnson, D.A.; Miltenberger, M.A.; Farzam, H. Predicting the service life of concrete marine structure: An environmental methodology. ACI Struct. J. 1998, 95, 27–36. [Google Scholar]
- Kassir, M.K.; Ghosn, M. Chloride-induced corrosion of reinforced concrete bridge decks. Cem. Concr. Res. 2002, 32, 139–143. [Google Scholar] [CrossRef]
- McGee, R. Modelling of durability performance of tasmanian bridges. In Proceedings of ICASP8 Applications of Statistics and Probability in Civil Engineering, Sydney, Australia, 12–15 December 1999; pp. 297–306.
- Tavwood Engineering Ltd. Condition Audit of Reinforced Concrete Piers and Review of Concrete Design for the Marine Environment Executive Summary; Technical Report; CEDD: Hong Kong, China, 1996.
- Bamforth, P.B. Spreadsheet model for reinforcement corrosion in structures exposed to chloride. In Concrete Under Severe Condition; E&FN Spon: London, UK, 1998; pp. 64–75. [Google Scholar]
- Chen, Z.; Zhao, G. Guide for Durability Based Design and Construction of Concrete Structure; China Architecture and Building Press: Beijing, China, 2004. [Google Scholar]
- Liu, J.; Xing, F.; Dong, B.; Ma, H.; Pan, D. Study on water sorptivity of the surface layer of concrete. Mater. Struct. 2013. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. JTJ 270-98. Testing Code of Concrete for Port and Waterwog Engineering; China Communications Press: Beijing, China, 1998.
- Ma, H.; Li, Z. Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Comput. Concr. 2013, 11, 317–336. [Google Scholar] [CrossRef]
- Ma, H.; Xu, B.; Lu, Y.; Li, Z. Modelling magnesia-phosphate cement paste at the micro-scale. Mater. Lett. 2014, 125, 15–18. [Google Scholar] [CrossRef]
- Ma, H. Mercury intrusion porosimetry in concrete technology: Tips of measurement, pore structure parameter acquisition and application. J. Porous Mater. 2014, 21, 207–215. [Google Scholar] [CrossRef]
- Liu, J.; Xing, F.; Dong, B.; Ma, H.; Pan, D. Study on surface permeability of concrete under immersion. Materials 2014, 7, 876–886. [Google Scholar] [CrossRef]
- Ma, H. Multi-Scale Modeling of the Microstructure and Transport Properties of Contemporary Concrete. Ph.D. Thesis, the Hong Kong University of Science and Technology, Hong Kong, China, 2013. [Google Scholar]
- Narmluk, M.; Nawa, T. Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures. Cem. Concr. Res. 2011, 41, 579–589. [Google Scholar] [CrossRef]
- Fraay, A.L.; Bijen, J.M.; de Haan, Y.M. The reaction of fly ash in concrete: A critical examination. Cem. Concr. Res. 1989, 19, 235–246. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, Q.; Xing, F.; Pan, D. Permeation properties and pore structure of surface layer of fly ash concrete. Materials 2014, 7, 4282–4296. [Google Scholar] [CrossRef]
- Hou, D.; Ma, H.; Zhu, Y.; Li, Z. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Mater. 2014, 67, 81–94. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 4th and final ed.; Wiley: New York, NY, USA, 1996. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, J.; Tang, K.; Pan, D.; Lei, Z.; Wang, W.; Xing, F. Surface Chloride Concentration of Concrete under Shallow Immersion Conditions. Materials 2014, 7, 6620-6631. https://doi.org/10.3390/ma7096620
Liu J, Tang K, Pan D, Lei Z, Wang W, Xing F. Surface Chloride Concentration of Concrete under Shallow Immersion Conditions. Materials. 2014; 7(9):6620-6631. https://doi.org/10.3390/ma7096620
Chicago/Turabian StyleLiu, Jun, Kaifeng Tang, Dong Pan, Zongru Lei, Weilun Wang, and Feng Xing. 2014. "Surface Chloride Concentration of Concrete under Shallow Immersion Conditions" Materials 7, no. 9: 6620-6631. https://doi.org/10.3390/ma7096620
APA StyleLiu, J., Tang, K., Pan, D., Lei, Z., Wang, W., & Xing, F. (2014). Surface Chloride Concentration of Concrete under Shallow Immersion Conditions. Materials, 7(9), 6620-6631. https://doi.org/10.3390/ma7096620