Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Experimental Techniques
3. Results and Discussion
Curing time (days) | I scan | II scan | ||
---|---|---|---|---|
Tgmidpoint (°C) | ΔHRes (J/g) | ΔHRel (J/g) | Tgmax (°C) | |
7 | 46.9 ± 0.1 | 38.3 ± 6.2 | 6.0 ± 0.3 | 62.3 ± 3.7 |
14 | 48.0 ± 0.4 | 35.6 ± 2.6 | 5.5 ± 0.8 | 62.5 ± 0.6 |
30 | 47.5 ± 0.8 | 33.1 ± 1.7 | 7.1 ± 1.6 | 63.9 ± 2.0 |
62 | 52.0 ± 1.3 | 31.8 ± 0.5 | 6.4 ± 0.3 | 61.2 ± 1.3 |
Thickness (mm) | Tg (°C) | ΔHRel (J/g) | ΔHRes (J/g) | Tgmax (°C) |
---|---|---|---|---|
0.8 | 33.3 ± 0.7 | 7.1 ± 0.1 | 72.6 ± 1.1 | 63.1 ± 1.5 |
1 | 42.5 ± 0.3 | 7.0 ± 0.4 | 47.5 ± 1.9 | 65.5 ± 1.7 |
5 | 46.9 ± 0.9 | 6.0 ± 0.6 | 38.3 ± 0.9 | 65.3 ± 1.3 |
10 | 44.2 ± 1.1 | 3.3 ± 0.2 | 21.1 ± 1.3 | 66.6 ± 1.6 |
40 | 56.4 ± 0.7 | – | 0.9 ± 0.6 | 63.2 ± 1.5 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hollaway, L.C. A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wan, B. An analytical model of FRP-concrete bond deterioration in moist environment. Adv. Struct. Eng. 2009, 12, 761–769. [Google Scholar] [CrossRef]
- Portnov, G.; Bakis, C.E.; Lackey, E.; Kulakov, V. FRP Reinforcing bars—Designs and methods of manufacture (Review of Patents). Mech. Compos. Mater. 2013, 49, 381–400. [Google Scholar] [CrossRef]
- Gao, W.; Dai, J.; Teng, J. Simple method for predicting temperatures in reinforced concrete beams exposed to a standard fire. Adv. Struct. Eng. 2014, 17, 573–590. [Google Scholar] [CrossRef]
- Goulouti, K.; de Castro, J.; Vassilopoulos, A.P.; Keller, T. Thermal performance evaluation of fiber-reinforced polymer thermal breaks for balcony connections. Energy Build. 2014, 70, 365–371. [Google Scholar] [CrossRef]
- Esposito, C.C.; Freuli, F.; Maffezzoli, A. The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks. Polym. Eng. Sci. 2013, 53, 531–539. [Google Scholar] [CrossRef]
- Esposito, C.C.; Mensitieri, G.; Maffezzoli, A. Analysis of the structure and mass transport properties of nanocomposite polyurethane. Polym. Eng. Sci. 2009, 49, 1708–1718. [Google Scholar] [CrossRef]
- Lettieri, M.; Frigione, M. Effects of humid environment on thermal and mechanical properties of a cold-curing epoxy resin. Constr. Build. Mater. 2012, 30, 753–760. [Google Scholar] [CrossRef]
- Moussa, O.; Vassilopoulos, A.P.; Keller, T. Effects of low-temperature curing on physical behavior of cold-curing epoxy adhesives in bridge construction. Int. J. Adhes. Adhes. 2012, 32, 15–22. [Google Scholar] [CrossRef]
- Greco, A.; Esposito, C.C.; Strafella, A.; Maffezzoli, A. Analysis of the structure and mass transport properties of clay nanocomposites based on amorphous PET. J. Appl. Polym. Sci. 2010, 118, 3666–3672. [Google Scholar] [CrossRef]
- Esposito, C.C.; Cavallo, A.; Pesce, E.; Greco, A.; Maffezzoli, A. Evaluation of the degree of dispersion of nanofillers by mechanical, rheological and permeability analysis. Polym. Eng. Sci. 2011, 51, 1280–1285. [Google Scholar] [CrossRef]
- Esposito, C.C.; Maffezzoli, A. Transport properties of graphite/epoxy composites: thermal, permeability and dielectric characterization. Polym. Test. 2013, 32, 880–888. [Google Scholar] [CrossRef]
- Ghiassi, B.; Marcari, G.; Oliveira, D.V.; Lourenco, P.B. Water degrading effects on the bond behavior in FRP-strengthened masonry. Compos. Part B Eng. 2013, 54, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Fraga, F.; Castro-Díaz, C.; Rodríguez-Nuñez, E.; Martínez-Ageitos, J.M. Physical aging for an epoxy network diglycidyl ether of bisphenol A/m-xylylenediamine. Polymer 2003, 44, 5779–5784. [Google Scholar] [CrossRef]
- Struik, C.E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier Scientific Publishing Company: New York, NY, USA, 1978; pp. 35–38. [Google Scholar]
- Colombini, D.; Martinez-Vega, J.J.; Merle, G. Dynamic mechanical investigations of the effects of water sorption and physical ageing on an epoxy resin system. Polymer 2002, 43, 4479–4485. [Google Scholar] [CrossRef]
- Frigione, M.; Naddeo, C.; Acierno, D. Cold-Curing Epoxy Resins: Aging and Environmental Effects. I—Thermal Properties. J. Polym. Eng. 2001, 21, 23–51. [Google Scholar]
- Lettieri, M.; Frigione, M. Natural and artificial weathering effects on cold-cured epoxy resins. J. Appl. Polym. Sci. 2011, 119, 1635–1645. [Google Scholar] [CrossRef]
- Esposito, C.C.; Freuli, F.; Frigione, M. Epoxy/graphene stacks nanocomposites as potential matrix for FRP. Polym. Compos. 2014. submitted for publication. [Google Scholar]
- Evstratova, S.I.; Antrim, D.; Fillingane, C.; Pojman, J.A. Isothermal frontal polymerization: Confirmation of the isothermal nature of the process and the effect of oxygen and polymer seed molecular weight on front propagation. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 3601–3608. [Google Scholar] [CrossRef]
- The Use of Aramidic Fibers to Improve the Structural Behaviour of Masonry Structures under Seismic Actions. Available online: http://www.unesco.org/archi2000/pdf/balsamo.pdf (accessed on 9 September 2014).
- ASTM D790. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2010.
- Mape Wrap 31 Technical Data Sheet. Available online: http://www.mapei.com/public/IT/MSDS/IT_1008_en_9073235_20140403101449ECCA.pdf (accessed on 9 September 2014).
- Frigione, M.; Lettieri, M.; Mecchi, A.M. Environmental effects on epoxy adhesive employed for restoration of historical buildings. J. Mater. Civ. Eng. 2006, 18, 715–722. [Google Scholar] [CrossRef]
- Simon, S.L.; Mckenna, G.B.; Sindt, O. Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation. J. Appl. Polym. Sci. 2000, 76, 495–508. [Google Scholar] [CrossRef]
- Acebo, C.; Picardi, A.; Fernandez-Francos, X.; de la Flor, S.; Ramis, X.; Serra, A. Effect of hydroxyl ended and end-capped multiarm star polymers on the curing process and mechanical characteristics of epoxy/anhydride thermosets. Prog. Org. Coat. 2014, 77, 1288–1298. [Google Scholar] [CrossRef]
- Mariani, A.; Bidali, S.; Caria, G.; Monticelli, O.; Russo, S.; Kenny, J.A. Synthesis and characterization of epoxy resin—Montmorillonite nanocomposites obtained by frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2204–2211. [Google Scholar] [CrossRef]
- Pojman, J.A.; Ilyachenko, V.M.; Khan, A.M. Free-radical frontal polymerization: Self-propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 1996, 92, 2825–2837. [Google Scholar] [CrossRef]
- Chechilo, N.N.; Khvilivitskii, R.J.; Enikolopyan, N.S. On the phenomenon of polymerization reaction spreading. Dokl. Akad. Nauk SSSR 1972, 204, 1180–1181. [Google Scholar]
- Pojman, J.A.; Willis, J.R.; Khan, A.M.; West, W.W. The true molecular weight distributions of acrylate polymers formed in propagating fronts. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 991–995. [Google Scholar] [CrossRef]
- Vicini, S.; Mariani, A.; Princi, E.; Bidali, S.; Pincin, S.; Fiori, S.; Pedemont, E.; Brunetti, A. Frontal polymerization of acrylic monomers for the consolidation of stone. Polym. Adv. Technol. 2005, 16, 293–298. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Corcione, C.E.; Freuli, F.; Frigione, M. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness. Materials 2014, 7, 6832-6842. https://doi.org/10.3390/ma7096832
Corcione CE, Freuli F, Frigione M. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness. Materials. 2014; 7(9):6832-6842. https://doi.org/10.3390/ma7096832
Chicago/Turabian StyleCorcione, Carola Esposito, Fabrizio Freuli, and Mariaenrica Frigione. 2014. "Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness" Materials 7, no. 9: 6832-6842. https://doi.org/10.3390/ma7096832
APA StyleCorcione, C. E., Freuli, F., & Frigione, M. (2014). Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness. Materials, 7(9), 6832-6842. https://doi.org/10.3390/ma7096832