Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear
Abstract
:1. Introduction
2. Materials and Material Testing
2.1. Interstitial Free Steel DC06 and Aluminum Alloy AA6016
Alloying Component | C | Si | Mn | P | S | Al | N | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|
weight percentage | 0.003 | 0.018 | 0.137 | 0.013 | 0.010 | 0.035 | 0.0027 | 0.079 | balance |
Alloying Component | Si | Fe | Cu | Mn | Mg | Cr | Zn | Al |
---|---|---|---|---|---|---|---|---|
weight percentage | 1–1.5 | 0.5 | 0.2 | 0.2 | 0.25–0.6 | 0.1 | 0.2 | balance |
2.2. Material Testing
Material | Loading Case | Strain ε or γ (−) | Stress σ or τ (MPa) |
---|---|---|---|
DC06 | (ps) tension | 0.1 | 392 |
0.2 | 449 | ||
shear | 0.1 | 136 | |
0.2 | 166 | ||
0.3 | 184 | ||
AA6016 | (ps) tension | 0.1 | 255 |
0.2 | 287 | ||
shear | 0.1 | 130 | |
0.2 | 153 | ||
0.3 | 166 |
3. Experimental Analysis of Microstructural Properties
3.1. Fracture Surfaces
3.2. Microstructural Investigation
3.2.1. IF-Steel DC06: TEM Image and Analysis
3.2.2. Aluminum Alloy AA6016-T4: TEM-Image and Analysis
4. Discussion
Loading Conditions | Strain Level | Characteristics of Dislocation Structure | |
---|---|---|---|
Aluminum Alloy AA6016-T4 | Steel DC06 | ||
plane strain tension | 0 | single dislocations, accumulations of dislocations | single dislocations, cell structure |
0.1 | single dislocations, start of formation of dislocation walls | cell structure and start of formation of dislocation walls | |
0.2 | formation of dislocation cells parallel to two directions | cell structure, interaction between dislocation walls, micro-shear bands | |
Shear | 0.1 | single dislocations, start of formation of dislocation walls parallel to two directions, cell structures | single dislocations, dislocation pile-up |
0.2 | formation of dislocation cells, dislocation walls | dislocation pile-up, cell structures | |
0.3 | on basis of the dislocation walls form micro-shear bands | dislocation pile up, cell structure and start of formation of dislocation walls |
Loading Conditions | Strain | Number of Cells Per Grain | Aspect Ratio a/b of Cells | Orientation of Cells to Loading Direction | |||
---|---|---|---|---|---|---|---|
AA6016-T4 | DC06 | AA6016-T4 | DC06 | AA6016-T4 | DC06 | ||
plane strain tension | 0.1 | 10 to 20 | 2 to 6 | 1:2 to 1:1 | 1:2 to 1:3 | 10° | 10°–15° |
0.2 | 25 to 30 | 6 to 8 | 1:2 | 1:1 to 1:4 | 35°–40° | 15°–20° | |
shear | 0.1 | 20 | - | 1:3 to 1:2 | 1:1, rarely 1:2 | 3°–10° | 5°–8° |
0.2 | 30 to 40 | 5 | 1:2 | 1:1 | 35°–40° | 10°–25° | |
0.3 | 50 to 60 | 15 | 1:1 | 1:1, rarely 1:2 | 35°–40° | 30°–35° |
- In the as-received material, as well as at low strain levels (0%–5%), single dislocations and accumulations of dislocations are observed in aluminum, whereas in steel, already dislocation cells are starting to form.
- An increase of the strain level up to 10% leads to the formation of dislocation walls in both materials.
- A further increase in strain leads to differences in the dislocation structure evolution: in aluminum, an orientation/direction-dependent formation of dislocation cells is occurring; in steel, a strong interaction between the dislocation walls and the formation of micro-shear bands are observed.
- In aluminum, the formation of dislocation cells starts earlier than in steel, even for strain levels smaller than 0.1.
- An evolution of the dislocation structure is not based on the intensive formation of dislocation cells and dislocation walls. Dislocation walls in combination with micro-shear bands in aluminum and in steel form due to the formation of strongly-branched dislocation structures.
5. Summary and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Von Mises, R. Mechanik der festen Körper im plastisch-deformablen Zustand. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; Göttinger Digitalisierungszentrum: Goettingen, Germany, 1913; pp. 582–592. (In German) [Google Scholar]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. Lond. 1948, 193, 281–297. [Google Scholar] [CrossRef]
- Barlat, F.; Gracio, J.J.; Lee, M.G.; Rauch, E.F.; Vincze, G. An alternative to kinematic hardening in classical plasticity. Int. J. Plast. 2011, 27, 1309–1327. [Google Scholar] [CrossRef]
- Clausmeyer, T.; Gerstein, G.; Bargmann, S.; Svendsen, B.; Boogaard, A.; Zillmann, B. Experimental characterization of microstructure development during loading path changes in bcc sheet steels. J. Mater. Sci. 2013, 48, 674–689. [Google Scholar] [CrossRef]
- Fernandes, J.V.; Schmitt, J.H. Dislocation microstructures in steel during deep drawing. Philos. Mag. A 1983, 48, 841–870. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Backofen, W.A. Strain hardening and instability in biaxially stretched sheets. Metall. Trans. 1973, 4, 1113–1123. [Google Scholar] [CrossRef]
- Nesterova, E.; Bacroix, B.; Teodosiu, C. Experimental observation of microstructure evolution under strain-path changes in low-carbon IF steel. Mater. Sci. Eng. A 2001, 309, 495–499. [Google Scholar] [CrossRef]
- Peeters, B.; Kalidindi, S.R.; Teodosiu, C.; Houtte, P.V.; Aernoudt, E. A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase B.C.C. polycrystals. J. Mech. Phys. Solids 2002, 50, 783–807. [Google Scholar] [CrossRef]
- Rauch, E.F.; Schmitt, J.H. Dislocation substructures in mild steel deformed in simple shear. Mater. Sci. Eng. 1989, 441, 441–448. [Google Scholar] [CrossRef]
- Thuillier, S.; Rauch, E. Development of micro-bands in mild steel during cross loading. Acta Metall. Mater. 1994, 42, 1973–1983. [Google Scholar] [CrossRef]
- Wilson, D.; Bate, P. Influences of cell walls and grain boundaries on transient responses of an IF steel to changes in strain path. Acta Metall. Mater. 1994, 42, 1099–1111. [Google Scholar] [CrossRef]
- Yin, Q.; Zillmann, B.; Suttner, S.; Gerstein, G.; Biasutti, M.; Tekkaya, A.E.; Wagner, M.F.X.; Merklein, M.; Schaper, M.; Halle, T.; et al. An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int. J. Solids Struct. 2014, 51, 1066–1074. [Google Scholar] [CrossRef]
- Van Riel, M. Strain Path Dependency in Sheet Metal-Experiments and Models. Ph.D. Thesis, Twente University, Enschede, The Netherlands, 2009. [Google Scholar]
- Bauschinger, J. Über die Veränderung der Elasticitätsgrenze und des Elasticitätsmoduls verschiedener Metalle. Zivilingenieur 1881, 27, 289–348. [Google Scholar]
- Zillmann, B.; Härtel, M.; Halle, T.; Lampke, T.; Wagner, M. Flow behavior of automotive aluminum sheets during in-plane uniaxial and biaxial compression loading. Steel Res. Int. 2011, 1, 691–694. [Google Scholar]
- Merklein, M.; Biasutti, M. Forward and reverse simple shear test experiments for material modeling in forming simulations. In Proceedings of the 10th International Conference on Technology of Plasticity, ICTP 2011, Aachen, Germany, 25–30 September 2011; Wiley: Hoboken, NJ, USA, 2011; Volume 1, pp. 702–707. [Google Scholar]
- Hasegawa, T.; Yakou, T.; Karashima, S. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Mater. Sci. Eng. 1975, 20, 267–276. [Google Scholar] [CrossRef]
- Anand, L.; Gurtin, M.E.; Lele, S.P.; Gething, C. A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results. J. Mech. Phys. Solids 2005, 53, 1789–1826. [Google Scholar] [CrossRef]
- Bardella, L. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 2006, 54, 128–160. [Google Scholar] [CrossRef]
- Bargmann, S.; Svendsen, B.; Ekh, M. An extended crystal plasticity model for latent hardening in polycrystals. Comput. Mech. 2011, 48, 631–645. [Google Scholar] [CrossRef]
- Evers, L.P.; Brekelmans, W.A.M.; Geers, M.G.D. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct. 2004, 41, 5209–5230. [Google Scholar] [CrossRef]
- Holmedal, B.; van Houtte, P.; An, Y. A crystal plasticity model for strain-path changes in metals. Int. J. Plast. 2008, 24, 702–707. [Google Scholar] [CrossRef]
- Husser, E.; Lilleodden, E.; Bargmann, S. Computational modeling of intrinsically induced strain gradients during compression of c-axis oriented magnesium single crystal. Acta Mater. 2014, 71, 206–219. [Google Scholar] [CrossRef]
- Kalidini, S.R.; Bronkhorst, C.A.; Anand, L. Crystallographic texture evolution during bulk deformation processing of fcc metals. J. Mech. Phys. Solids 1992, 40, 537–569. [Google Scholar] [CrossRef]
- Marin, E.B.; Dawson, P.R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput. Methods Appl. Mech. Eng. 1998, 165, 23–41. [Google Scholar] [CrossRef]
- Clausmeyer, T.; van den Boogaard, T.; Noman, M.; Gershteyn, G.; Schaper, M.; Svendsen, B.; Bargmann, S. Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale. Int. J. Mater. Form. 2011, 4, 141–154. [Google Scholar] [CrossRef]
- Ohno, N.; Okumura, D. Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 2007, 55, 1879–1898. [Google Scholar] [CrossRef]
- Roll, K.; Wiegand, K.; Hora, P.; Manopulo, N.; Clausmeyer, T. Benchmark 2—Influence of drawbeads on the springback behaviour (S-RAIL-08). In Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Numisheet, Interlaken, Switzerland, 1–5 September 2008; Numisheet: Melbourne, Australia, 2008; pp. 53–111. [Google Scholar]
- Barthel, C.; Klusemann, B.; Denzer, R.; Svendsen, B. Modeling of a thermomechanical process chain for sheet steels. Int. J. Mech. Sci. 2013, 74, 46–54. [Google Scholar] [CrossRef]
- Behrouzi, A.; Soyarslan, C.; Klusemann, B.; Bargmann, S. Inherent and induced anisotropic finite visco-plasticity with applications to the forming of DC06 sheets. Int. J. Mech. Sci. 2014, 89, 101–111. [Google Scholar] [CrossRef]
- Rabahallah, M.; Balan, T.; Bouvier, S.; Bacroix, B.; Barlat, F.; Chung, K.; Teodosiu, C. Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction. Int. J. Plast. 2009, 25, 491–512. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z. Work-hardening behavior of mild steel under cyclic deformation at finite strains. Acta Metall. Mater. 1994, 42, 3481–3491. [Google Scholar] [CrossRef]
- Teodosiu, C.; Hu, Z.H. Evolution of the intragranular microstructure at moderate and large strains: Modelling and computational significance. Proc. Numiform 1995, 95, 173–182. [Google Scholar]
- Bouvier, S.; Gardey, B.; Haddadi, H.; Teodosiu, C. Characterization of the strain-induced plastic anisotropy of rolled sheets by using sequences of simple shear and uniaxial tensile tests. J. Mater. Process. Technol. 2006, 174, 115–126. [Google Scholar] [CrossRef]
- Cold Rolled Low Carbon Steel Flat Products for Cold Forming; Technical Report for Arcelormittal: Luxembourg City, Luxembourg, 2006.
- Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought products—Part 3: Chemical Composition and form of Products; European Standards: Pilsen, Czech, 2007; EN 573-3:2007.
- Van Riel, M.; van den Boogaard, A. Stress-strain responses for continuous orthogonal strain path changes with increasing sharpness. Scr. Mater. 2007, 57, 381–384. [Google Scholar] [CrossRef]
- Zillmann, B.; Clausmeyer, T.; Bargmann, S.; Lampke, T.; Wagner, M.X.; Halle, T. Validation of simple shear tests for parameter identification considering the evolution of plastic anisotropy. Tech. Mech. 2012, 32, 622–630. [Google Scholar]
- Fellows, J.A.; Boyer, H.E. Metals Handbook. Fractography and Atlas of Fractographs; American Society for Metals: Materials Park, OH, USA, 1974; Volume 9. [Google Scholar]
- Taylor, G. The mechanism of plastic deformation of crystals. Part II. Comparison with observations. Proc. R. Soc. Lond. A 1934, 145, 388–404. [Google Scholar] [CrossRef]
- Elangovan, K.; Balasubramanian, V. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater. Charact. 2008, 59, 1168–1177. [Google Scholar] [CrossRef]
- Wanderka, N.; Schiffmann, R.; Banhart, J. Characterization of precipitates in aluminium-based alloy AW 6016. Surf. Interface Anal. 2007, 39, 221–226. [Google Scholar] [CrossRef]
- Rybin, V. Severe Plastic Deformations and Fracture of Metals; Metallurgiya: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Kalidini, S.R.; Bronkhorst, C.A.; Anand, L. Crystallographic texture evolution during bulk deformation processing of fcc metals. J. Mech. Phys. Solids 1992, 40, 537–569. [Google Scholar] [CrossRef]
- Hirsch, P.B.; Howie, A.; Nicholson, R.B.; Pashley, D.W.; Whelan, M.J. Electron Microscopy of Thin Crystals; Butterworths: London, UK, 1965. [Google Scholar]
- Bailey, J.E.; Hirsch, P.B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 1960, 5, 485–497. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerstein, G.; Klusemann, B.; Bargmann, S.; Schaper, M. Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials 2015, 8, 285-301. https://doi.org/10.3390/ma8010285
Gerstein G, Klusemann B, Bargmann S, Schaper M. Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials. 2015; 8(1):285-301. https://doi.org/10.3390/ma8010285
Chicago/Turabian StyleGerstein, Gregory, Benjamin Klusemann, Swantje Bargmann, and Mirko Schaper. 2015. "Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear" Materials 8, no. 1: 285-301. https://doi.org/10.3390/ma8010285
APA StyleGerstein, G., Klusemann, B., Bargmann, S., & Schaper, M. (2015). Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials, 8(1), 285-301. https://doi.org/10.3390/ma8010285