Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Abstract
:1. Introduction
2. Anti-Ferroelectricity and Associated Materials
Material Name | Physical/Chemical Modifications | Energy Density (J/cm3) | Electric Field (kV/cm) | Reference |
---|---|---|---|---|
(Pb0.97La0.02)(Zr0.97Ti0.03)O3 | 3 wt % glass (PbO-B2O3-SiO2-ZnO) | 3.1 | 581 | [57] |
(Pb0.97La0.02)(Zr0.97Ti0.03)O3 | without glass | 1.4 | 581 | [57] |
Pb0.99Nb0.02[(Zr0.57Sn0.43)1 − yTiy]0.98O3 | with half electrode | 1.30 | 70 | [47] |
Pb0.99Nb0.02[(Zr0.57Sn0.43)1 − yTiy]0.98O3 | with full electrode | 1.19 | 70 | [47] |
(Pb0.94 −xLa0.04Bax)[(Zr0.60Sn0.40)0.841Ti0.16]O3 | x = 0 (0 MPa) | 0.35 | 30 | [58] |
(Pb0.94 − xLa0.04Bax)[(Zr0.60Sn0.40)0.841Ti0.16]O3 | x = 0.02 (20 MPa) | 0.38 | 30 | [58] |
Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 | - | 0.62 | 56 | [59] |
Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 | 4 wt % glass (CdO-Bi2O3-PbO-ZnO-Al2O3-B2O3-SiO2) | 3.3 | 150 | [60] |
Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 | without glass | 1.9 | 110 | [60] |
(Pb0:97La0:02)(Zr0:92Sn0:05Ti0:03)O3 | 3% glass (0.8PbO-0.2B2O3) | 7.4 | 475 | [61] |
(Pb0:97La0:02)(Zr0:92Sn0:05Ti0:03)O3 | without glass | 4.5 | 320 | [61] |
Pb0.97La0.02(Zr0.95Ti0.05)O3 | - | 12.4 | 1120 | [62] |
(Pb0.85Ba0.08Sr0.03La0.03)(Zr0.74Sn0.22Ti0.04) | - | 1.2 | 100 | [63] |
[(Bi1/2Na1/2)0.94Ba0.06]La0.8Zr0.2TiO3 | - | 1.58 | 85 | [64] |
(Ba0.1La0.02)(Zr0.675Sn0.275Ti0.05)O3 | - | 2.05 | 70 | [65] |
0.75(0.80Bi1/2Na1/2TiO3-0.20Bi1/2K1/2TiO3)-0.25SrTiO3 | - | 0.84 | 100 | [66] |
Pb0.97La0.02(Zr0.50Sn0.45Ti0.05)O3 | - | 5.6 | 400 | [67] |
(Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 | - | 4.65 | 200 | [68] |
0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 | double stage sintering | 0.90 | 100 | [69] |
(Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 | spark plasma sintering | 6.40 | 275 | [70] |
(Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 | conventional sintering | 4.65 | 200 | [70] |
(Na1 − xCax)(Nb1 − xZrx)O3 x = 0.04 | conventional sintering | 0.91 | 130 | [71] |
(Pb0.92La0.04Ba0.02)[(Zr0.60Sn0.40)0.84Ti0.16]O3 | at 90 MPa | 0.91 | 60 | [43] |
0.91(Bi0.5Na0.5)TiO3-0.07BaTiO3-0.02(K0.5Na0.5)NbO3 | at 100 MPa | 0.387 | 60 | [37] |
(Pb0.96La0.04)(Zr0.90Ti0.10)O3 | at 100 MPa | 0.698 | 60 | [43] |
3. Enhancing Energy Storage Capacity in Anti-Ferroelectric Materials: Physical Routes
3.1. Compressive Pre-Stresses
3.2. Self Clamping Using Electrodes
4. Enhancing Energy Storage Capacity in Anti-Ferroelectric Materials: Chemical Routes
4.1. Glass Incorporation and Internal Clamping
4.2. Doping and Chemical Modifications
5. Influence of Other Factors
6. Disadvantages Associated with Anti-Ferroelectric Materials
7. Concluding Remarks
8. Challenges and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rashid, M.H. Power Electronics: Circuits, Devices, and Applications, 3rd ed.; Pearson Education: New Delhi, India, 2003. [Google Scholar]
- Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K. Energy storage devices for future hybrid electric vehicles. J. Power Sources 2007, 168, 2–11. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energ. Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrog. Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Shukla, A.; Sampath, S.; Vijayamohanan, K. Electrochemical supercapacitors: Energy storage beyond batteries. Curr. Sci. 2000, 79, 1656–1661. [Google Scholar]
- Sharma, R.; Rastogi, A.; Desu, S. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem. Commun. 2008, 10, 268–272. [Google Scholar] [CrossRef]
- Arbizzani, C.; Mastragostino, M.; Soavi, F. New trends in electrochemical supercapacitors. J. Power Sources 2001, 100, 164–170. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Cianchetti, M.; Mattoli, V.; Mazzolai, B.; Laschi, C.; Dario, P. A new design methodology of electrostrictive actuators for bio-inspired robotics. Sens. Actuators B Chem. 2009, 142, 288–297. [Google Scholar] [CrossRef]
- Gorzkowski, E.; Pan, M.J.; Bender, B.; Wu, C. Glass-ceramics of barium strontium titanate for high energy density capacitors. J. Electroceram 2007, 18, 269–276. [Google Scholar] [CrossRef]
- Luo, J.; Du, J.; Tang, Q.; Mao, C. Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans. Electron Dev. 2008, 55, 3549–3554. [Google Scholar] [CrossRef]
- Rangarajan, B. Nanophase Glass Ceramics for Capacitive Energy Storage. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, December 2009. [Google Scholar]
- Dong, G.; Ma, S.; Du, J.; Cui, J. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int. 2009, 35, 2069–2075. [Google Scholar] [CrossRef]
- Hara, M.; Gerhold, J. Electrical insulation specification and design method for superconducting power equipment. Cryogenics 1998, 38, 1053–1061. [Google Scholar] [CrossRef]
- Hassenzahl, W.V.; Hazelton, D.W.; Johnson, B.K.; Komarek, P.; Noe, M.; Reis, C.T. Electric power applications of superconductivity. Proc. IEEE 2004, 92, 1655–1674. [Google Scholar] [CrossRef]
- Rawlings, R.; Wu, J.; Boccaccini, A. Glass-ceramics: Their production from wastes—A review. J. Mater. Sci 2006, 41, 733–761. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.J.; Rangarajan, B.; Lanagan, M.T.; Pantano, C.G. Alkali-free glass as a high energy density dielectric material. Mater. Lett. 2009, 63, 1245–1248. [Google Scholar] [CrossRef]
- Chao, S.; Dogan, F. Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int. J. Appl. Ceram. Technol. 2011, 8, 1363–1373. [Google Scholar] [CrossRef]
- Ahmad, S. Device applications of band-structure-engineered nanomaterials current status and future trend-review. Int. J. Nanoelectron. Mater. 2015, 8, 129–202. [Google Scholar]
- Randall, C.A.; Ogihara, H.; Kim, J.R.; Yang, G.Y.; Stringer, C.S.; Trolier-McKinstry, S.; Lanagan, M. High temperature and high energy density dielectric materials. In Proceedings of the Pulsed Power Conference, Washington, DC, USA, 28 June–5 July 2009; pp. 346–351.
- Zou, Y.; Han, L.; Yuan, G.; Liu, B.; Zhao, X.; Tian, B.; Wang, J.; Sun, S.; Sun, J.; Meng, X. Enhanced ferroelectric and dielectric properties of the P(VDF-TrFE)/Ag nanoparticles composite thin films. J. Mater. Sci. Mater. 2014, 25, 3461–3465. [Google Scholar] [CrossRef]
- Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; Zur Loye, H.C. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2009, 2, 1697–1733. [Google Scholar] [CrossRef]
- Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Claude, J.; Norena-Franco, L.E.; Seok, S.I.; Wang, Q. Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 2008, 20, 6304–6306. [Google Scholar] [CrossRef]
- Hao, X.; Zhai, J.; Yao, X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. J. Am. Ceram. Soc. 2009, 92, 1133–1135. [Google Scholar] [CrossRef]
- Ma, B.; Kwon, D.K.; Narayanan, M.; Balachandran, U. Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 2009, 24, 2993–2996. [Google Scholar] [CrossRef]
- Choi, K.J.; Biegalski, M.; Li, Y.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y.; Pan, X.; Gopalan, V. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004, 306, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielecte. Electr. Insul. 2010, 17, 1036–1042. [Google Scholar] [CrossRef]
- Rangarajan, B.; Jones, B.; Shrout, T.; Lanagan, M. Barium/lead-rich high permittivity glass-ceramics for capacitor applications. J. Am. Ceram. Soc. 2007, 90, 784–788. [Google Scholar] [CrossRef]
- Ogihara, H.; Randall, C.A.; Trolier-McKinstry, S. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 Ceramics. J. Am. Ceram. Soc. 2009, 92, 1719–1724. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Patel, S.; Vaish, R. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv. 2014, 4, 087106. [Google Scholar] [CrossRef]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.; Park, N.; Stephenson, G. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys 2006, 100, 051606. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Zhou, X.; Neese, B.; Zhang, Q.; Bauer, F. Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans. Dielecte. Electr. Insul. 2006, 13, 1162–1169. [Google Scholar]
- Ortega, N.; Kumar, A.; Scott, J.; Chrisey, D.B.; Tomazawa, M.; Kumari, S.; Diestra, D.; Katiyar, R. Relaxor-ferroelectric superlattices: High energy density capacitors. J. Phys. Condens. Matter. 2012, 24, 445901. [Google Scholar] [CrossRef] [PubMed]
- Wawrzała, P.; Korzekwa, J. Charge-discharge properties of PLZT x/90/10 ceramics. Ferroelectrics 2013, 446, 91–101. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching. Mater. Res. Express 2014, 1, 045502. [Google Scholar] [CrossRef]
- Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 1951, 82, 729–732. [Google Scholar] [CrossRef]
- Lieb, E.H. Exact solution of the F model of an antiferroelectric. Phys. Rev. Lett. 1967, 18, 1046–1048. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. A technique for giant mechanical energy harvesting using ferroelectric/antiferroelectric materials. J. Appl. Phys. 2014, 115, 084908. [Google Scholar] [CrossRef]
- Young, S.; Zhang, J.; Hong, W.; Tan, X. Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Gao, F.; Dong, X.; Mao, C.; Liu, W.; Zhang, H.; Yang, L.; Cao, F.; Wang, G. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 2011, 94, 4382–4386. [Google Scholar] [CrossRef]
- Haertling, G.H. PLZT electrooptic materials and applications—A review. Ferroelectrics 1987, 75, 25–55. [Google Scholar] [CrossRef]
- Hao, X.; Zhai, J.; Kong, L.B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1–57. [Google Scholar] [CrossRef]
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 3, 1330001. [Google Scholar] [CrossRef]
- Liu, H.; Dkhil, B. A brief review on the model antiferroelectric PbZrO3 perovskite-like material. Z. Kristallogr. Cryst. Mater. 2011, 226, 163–170. [Google Scholar] [CrossRef]
- Panda, P. Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049–5062. [Google Scholar] [CrossRef]
- Castelli, I.E.; Jacobsen, K.W. Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure. Model. Simul. Mater. Sci. Eng. 2014, 22, 055007. [Google Scholar] [CrossRef]
- Kresin, V.Z.; Knight, W. Pair Correlations in Many-Fermion Systems, 1st ed.; Springer, PlenumPress: NewYork, NY, USA, 1998. [Google Scholar]
- Chauhan, A.; Patel, S.; Vaish, R. Effect of directional mechanical confinement on the electrical energy storage densityin 68Pb(Mn1/3Nb2/3)O3–32PbTiO3 single crystals. Ferroelectrics 2015, 478, 40–53. [Google Scholar] [CrossRef]
- Hao, X.; Wang, P.; Zhang, X.; Xu, J. Microstructure and energy-storage performance of PbO-B2O3-SiO2-ZnO glass added (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thick films. Mater. Res. Bull. 2013, 48, 84–88. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, H.; Liu, X.; Feng, Y.; Tan, X. Effect of Ba content on the stress sensitivity of the antiferroelectric to ferroelectric phase transition in (Pb,La,Ba,)(Zr,Sn,Ti)O3 ceramics. J. Am. Ceram. Soc. 2014, 97, 206–212. [Google Scholar] [CrossRef]
- Chen, X.; Cao, F.; Zhang, H.; Yu, G.; Wang, G.; Dong, X.; Gu, Y.; He, H.; Liu, Y. Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40) 0.95Ti0.05]O3 antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 2012, 95, 1163–1166. [Google Scholar] [CrossRef]
- Chen, S.; Yang, T.; Wang, J.; Yao, X. Effects of glass additions on the dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. 2013, 24, 4764–4768. [Google Scholar] [CrossRef]
- Chen, S.; Yang, T.; Wang, J.; Yao, X. Effects of glass additions on energy storage performance of (Pb0.97La0.02)(Zr0.92Sn0.05Ti0.03)O3 antiferroelectric thick films. J. Adv. Dielectr. 2013, 3, 1350012. [Google Scholar] [CrossRef]
- Hao, X.; Yue, Z.; Xu, J.; An, S.; Nan, C.W. Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. J. Appl. Phys. 2011, 110, 064109. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Chen, S.; Li, G. High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 2013, 48, 3847–3849. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Xie, H.; Cao, J. High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1 − x)ZrxTiO3 lead-free anti-ferroelectric ceramics. Ceram. Int. 2014, 40, 4323–4326. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, L.; Zhang, G.; Liu, S.; Yi, J.; Xiong, X.; Yu, Y.; He, J.; Zeng, Y. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 2013, 39, 5571–5575. [Google Scholar] [CrossRef]
- Ye, J.; Liu, Y.; Lu, Y.; Ding, J.; Ma, C.; Qian, H.; Yu, Z. Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics. J. Mater. Sci. Mater. 2014, 25, 4632–4637. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Yang, T.; Wang, J. Composition-dependent dielectric properties and energy storage performance of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. J. Electroceram. 2014, 32, 307–310. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.; Fan, B.; Zhang, G. High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram. Int. 2015, 41, 1139–1144. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Y.; Lu, Y.; Qian, H.; Gao, H.; Chen, H.; Ma, C. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater. Lett. 2014, 114, 107–110. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.; Fan, B.; Zhang, G. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloy Compd. 2015, 622, 162–165. [Google Scholar] [CrossRef]
- Shimizu, H.; Guo, H.; Reyes-Lillo, S.E.; Mizuno, Y.; Rabe, K.M.; Randall, C.A. Lead-free antiferroelectric: xCaZrO3-(1 − x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans. 2015, 44, 10763–10772. [Google Scholar] [CrossRef] [PubMed]
- Borkar, H.; Singh, V.N.; Singh, B.P.; Tomar, M.; Gupta, V.; Kumar, A. Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications. RSC Adv. 2014, 4, 22840–22847. [Google Scholar] [CrossRef]
- Scott, J.; Melnick, B.; McMillan, L.; de Araujo, C.P. Dielectric breakdown in high-ε films for ULSI DRAMs. Integr. Ferrorelectr. 1993, 3, 225–243. [Google Scholar] [CrossRef]
- Lee, F.Y.; Jo, H.R.; Lynch, C.S.; Pilon, L. Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition. Smart Mater. Struct. 2013, 22, 025038. [Google Scholar] [CrossRef]
- Fletcher, N.; Hilton, A.; Ricketts, B. Optimization of energy storage density in ceramic capacitors. J. Phys. D Appl. Phys. 1996, 29, 253. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, Y.; Zheng, S.; Jin, A.; Wang, F.; Yao, X. Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure and temperature. J. Appl. Phys. 2002, 92, 2663–2667. [Google Scholar] [CrossRef]
- Zhang, N.; Liao, L.; Feng, Y.; Xu, Z. Temperature dependence of electrical properties of lead lanthanum zirconate stannate titanate ceramics. Ferroelectrics 2010, 409, 27–32. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, Y.; Young, S.E.; Feng, Y. Influence of perpendicular compressive stress on the phase transition behavior in (Pb,La,Ba,)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ceram. Int. 2015, 42, 721–726. [Google Scholar] [CrossRef]
- Ranjan, R.; Pandey, D. Antiferroelectric phase transition in (Sr1 − xCax)TiO3: II. X-ray diffraction studies. J. Phys. Condens. Matter. 2001, 13. [Google Scholar] [CrossRef]
- Tan, X.; Frederick, J.; Ma, C.; Aulbach, E.; Marsilius, M.; Hong, W.; Granzow, T.; Jo, W.; Rödel, J. Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef]
- Dong, W.D.; Finkel, P.; Amin, A.; Lynch, C.S. Giant electro-mechanical energy conversion in [011] cut ferroelectric single crystals. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Valadez, J.; Sahul, R.; Alberta, E.; Hackenberger, W.; Lynch, C. The effect of a hydrostatic pressure induced phase transformation on the unipolar electrical response of Nb modified 95/5 lead zirconate titanate. J. Appl. Phys 2012, 111. [Google Scholar] [CrossRef]
- Marsilius, M.; Frederick, J.; Hu, W.; Tan, X.; Granzow, T.; Han, P. Mechanical confinement: An effective way of tuning properties of piezoelectric crystals. Adv. Funct. Mater. 2012, 22, 797–802. [Google Scholar] [CrossRef]
- Chen, W.; Lynch, C.S. A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Metall. 1998, 46, 5303–5311. [Google Scholar] [CrossRef]
- Hwang, S.C.; Lynch, C.S.; McMeeking, R.M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 1995, 43, 2073–2084. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Enhanced energy harvesting in commercial ferroelectric materials. Mater. Res. Express 2014, 1. [Google Scholar] [CrossRef]
- Patel, S.; Chauhan, A.; Vaish, R. Analysis of high-field energy harvesting using ferroelectric materials. Energ. Technol. 2014, 2, 480–485. [Google Scholar] [CrossRef]
- Peláiz-Barranco, A.; Hall, D. Influence of composition and pressure on the electric field-induced antiferroelectric to ferroelectric phase transformation in lanthanum modified lead zirconate titanate ceramics. IEEE Trans. Ultrason. Ferroelectr. 2009, 56, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, X.; Cao, F.; Wang, G.; Dong, X.; Hu, Z.; Du, T. Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J. Am. Ceram. Soc. 2010, 93, 4015–4017. [Google Scholar] [CrossRef]
- Holand, W.; Beall, G.H. Glass Ceramic Technology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Shri Prakash, B.; Varma, K.B.R. Effect of the addition of B2O3 and BaO-B2O3-SiO2 glasses on the microstructure and dielectric properties of giant dielectric constant material CaCu3Ti4O12. J. Solid State Chem. 2007, 180, 1918–1927. [Google Scholar] [CrossRef]
- Frohlich, H. On the theory of dielectric breakdown in solids. Proc. R. Soc. A Math. Phys. 1947, 188, 521–532. [Google Scholar] [CrossRef]
- Vermeer, J. On the relation between ionic conductivity and breakdown strength of glass. Physica 1956, 22, 1269–1278. [Google Scholar] [CrossRef]
- Von Hippel, A.; Maurer, R.J. Electric breakdown of glasses and crystals as a function of temperature. Phys. Rev. 1941, 59, 820–823. [Google Scholar] [CrossRef]
- Gerson, R.; Marshall, T.C. Dielectric breakdown of porous ceramics. J. Appl. Phys. 1959, 30, 1650–1653. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.; Lin, Z.; Deng, X. Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int. 2011, 37, 3643–3650. [Google Scholar] [CrossRef]
- Petnoi, N.; Bomlai, P.; Jiansirisomboon, S.; Watcharapasorn, A. Effects of Nb-doping on the micro-structure and dielectric properties of (Bi0.5Na0.5)TiO3 ceramics. Ceram. Int. 2013, 39, S113–S117. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Choudhary, R.; Thakur, A.K. Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 2006, 99, 150–159. [Google Scholar] [CrossRef]
- Ramam, K.; Chandramouli, K. Dielectric and piezoelectric properties of combinatory effect of A-site isovalent and B-site acceptor doped PLZT ceramics. Ceram. Silik. 2009, 53, 189. [Google Scholar]
- Aleem, M.; Nawaz, H.; Shuaib, M.; Qaisar, S.; Akbar, M. Piezoelectric and pyroelectric properties of Sr-doped PZT (PSZT) with minor manganese additions. J. Phys. Conf. Ser. 2013, 439. [Google Scholar] [CrossRef]
- Koduri, R.; Lopez, M. Effect of microstructure on ferroelectric and piezoelectric properties of A-site and B-site modified PLZT. Ferroelectr. Lett. 2007, 34, 113–123. [Google Scholar] [CrossRef]
- Goel, P.; Yadav, K. Substitution site effect on structural and dielectric properties of La-Bi modified PZT. J. Mater. Sci. 2007, 42, 3928–3935. [Google Scholar] [CrossRef]
- Gao, F.; Dong, X.; Mao, C.; Cao, F.; Wang, G. c/a Ratio-dependent energy-storage density in (0.9 − x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5Na0.5NbO3 Ceramics. J. Am. Ceram. Soc. 2011, 94, 4162–4164. [Google Scholar] [CrossRef]
- Chen, X.F.; Dong, X.L.; Wang, G.S.; Cao, F.; Wang, Y.L. Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 2008, 363, 56–63. [Google Scholar] [CrossRef]
- Campbell, C.K.; Van Wyk, J.D.; Chen, R. Experimental and theoretical characterization of an antiferroelectric ceramic capacitor for power electronics. IEEE Trans. Compon. Packag. A 2002, 25, 211–216. [Google Scholar] [CrossRef]
- Guan, F.; Wang, J.; Yang, L.; Tseng, J.-K.; Han, K.; Wang, Q.; Zhu, L. Confinement-Induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 2011, 44, 2190–2199. [Google Scholar] [CrossRef]
- Li, J.; Tan, S.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. J. Mater. Chem. 2012, 22, 23468–23476. [Google Scholar] [CrossRef]
- Dong, W.D.; Carlos Valadez, J.; Gallagher, J.A.; Jo, H.R.; Sahul, R.; Hackenberger, W.; Lynch, C.S. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate. J. Appl. Phys. 2015, 117. [Google Scholar] [CrossRef]
- Jimenez, R.; Hungria, T.; Castro, A.; Jimenez-Rioboo, R. Phase transitions in Na1 − xLixNbO3 solid solution ceramics studied by a new pyroelectric current based method. J. Phys. D: Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Dul’kin, E.; Mojaev, E.; Roth, M.; Jo, W.; Granzow, T. Acoustic emission study of domain wall motion and phase transition in (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3 − yK0.5Na0.5NbO3 lead-free piezoceramics. Sci. Mater. 2009, 60, 251–253. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C.R. Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials 2015, 8, 8009-8031. https://doi.org/10.3390/ma8125439
Chauhan A, Patel S, Vaish R, Bowen CR. Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials. 2015; 8(12):8009-8031. https://doi.org/10.3390/ma8125439
Chicago/Turabian StyleChauhan, Aditya, Satyanarayan Patel, Rahul Vaish, and Chris R. Bowen. 2015. "Anti-Ferroelectric Ceramics for High Energy Density Capacitors" Materials 8, no. 12: 8009-8031. https://doi.org/10.3390/ma8125439
APA StyleChauhan, A., Patel, S., Vaish, R., & Bowen, C. R. (2015). Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials, 8(12), 8009-8031. https://doi.org/10.3390/ma8125439