A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Morphology Evolution of CNTs
3.2. Phase Constituents and Microstructures
3.3. Tensile Test and Fracture Surface Study
Samples | σ0.2/MPa | σb/MPa | εf/% |
---|---|---|---|
PM2009Al | 269 | 441 | 19.8 |
Times | 5 vol% TiCX/2009Al | 7 vol% TiCX/2009Al | 9 vol% TiCX/2009Al | ||||||
---|---|---|---|---|---|---|---|---|---|
σ0.2/MPa | σb/MPa | εf/% | σ0.2/MPa | σb/MPa | εf/% | σ0.2/MPa | σb/MPa | εf/% | |
0 h | 276 | 415 | 9.3 | 303 | 497 | 8.4 | 338 | 519 | 7.7 |
1 h | 289 | 496 | 9.6 | 323 | 516 | 8.8 | 349 | 535 | 7.2 |
2 h | 315 | 509 | 10.8 | 359 | 553 | 9.0 | 404 | 601 | 8.1 |
3 h | 287 | 461 | 9.9 | 313 | 504 | 8.6 | 331 | 543 | 7.9 |
3.4. Interface between Nano-Sized TiCx Particles and Al Matrix
3.5. Mechanism Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, Z.Y.; Tjong, S.C.; Li, Y.L.; Liang, Y. High temperature creep behavior of nanometric Si3N4 particulate reinforced alumnium composite. Mater. Sci. Eng. A 1997, 225, 125–134. [Google Scholar] [CrossRef]
- Wong, W.L.E.; Gupta, M. Simultaneously improving strength and ductility of magnesium using nano-size SiC particulates and microwaves. Adv. Eng. Mater. 2006, 8, 735–740. [Google Scholar] [CrossRef]
- Shayesteh, P.; Mirdamadi, S.; Razavi, H. Study the effect of mechanical alloying parameters on synthesis of Cr2Nb–Al2O3 nanocomposite. Mater. Res. Bull. 2014, 49, 50–57. [Google Scholar] [CrossRef]
- Rajkovic, V.; Bozic, D.; Devecerski, A.; Jovanovic, M.T. Characteristic of copper matrix simultaneously reinforced with nano- and micro-sized Al2O3 particles. Mater. Charact. 2012, 67, 129–137. [Google Scholar] [CrossRef]
- Rahaei, M.B.; Yazdani-Rad, R.; Kazemzadeh, A.; Ebadzadeh, T. Mechanochemical synthesis of nano TiC powder by mechanical milling of titanium and graphite powders. Powder Technol. 2012, 217, 369–376. [Google Scholar] [CrossRef]
- Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Satyanarayana, P.V. X-ray peak broadening analysis of AA6061100-x-x wt % Al2O3 nanocomposite prepared by mechanical alloying. Mater. Charact. 2011, 62, 661–672. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Ezatpour, H.R.; Beygi, H. Microstructure and mechanical properties of Al-Al2O3 micro and nanocomposites fabricated by stir casting. Mater. Sci. Eng. A 2011, 528, 8765–8771. [Google Scholar] [CrossRef]
- Kennedy, A.R.; Wyatt, S.M. Characterising particle-matrix interfacial bonding in particulate Al-TiC MMCs produced by different methods. Comp. A 2001, 32, 555–559. [Google Scholar] [CrossRef]
- Mazahery, A.; Abdizadeh, H.; Baharvandi, H.R. Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 2009, 518, 61–64. [Google Scholar] [CrossRef]
- Lantelme, F.; Groult, H. Molten Salts Chemistry: From Lab to Applications; Newnes: Boston, MA, USA, 2013. [Google Scholar]
- Li, X.; Westwood, A.; Brown, A.; Brydson, R.; Rand, B. A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media. Carbon 2009, 47, 201–208. [Google Scholar] [CrossRef]
- Qiu, F.; Chu, J.G.; Hu, W.; Lu, J.B.; Li, X.D.; Han, Y.; Jiang, Q.C. Study of effect of Zr addition on the microstructures and mechanical properties of (TiCx-TiB2)/Cu composites by combustion synthesis and hot press consolidation in the Cu-Ti-B4C-Zr system. Mater. Res. Bull. 2015, 70, 167–172. [Google Scholar] [CrossRef]
- Choi, Y.; Rhee, S.W. Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC. J. Mater. Sci. 1993, 28, 6669–6675. [Google Scholar] [CrossRef]
- Strzeciwilk, D.; Wokulski, Z.; Tkacz, P. Growth and TEM and HREM characterisation of TiC crystals grown from high-temperature solutions. Cryst. Res. Technol. 2003, 38, 283–287. [Google Scholar] [CrossRef]
- Li, P.J.; Kandalova, E.G.; Nikitin, V.I. In situ synthesis of Al-TiC in aluminum melt. Mater. Lett. 2005, 59, 2545–2548. [Google Scholar] [CrossRef]
- Kim, W.J.; Yu, Y.J. The effect of the addition of multi-walled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites. Scr. Mater. 2014, 72–73, 25–28. [Google Scholar] [CrossRef]
- Jafarian, H.; Habibi-Livar, J.; Razavi, S.H. Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding. Comp. B 2015, 77, 84–92. [Google Scholar] [CrossRef]
- Nemati, N.; Khosroshahi, R.; Emamy, M.; Zolriasatein, A. Investigation of microstructure, hardness and wear properties of Al-4.5 wt % Cu-TiC nanocomposites produced by mechanical milling. Mater. Des. 2011, 32, 3718–3729. [Google Scholar] [CrossRef]
- Jeyasimman, D.; Sivasankaranb, S.; Sivaprasadc, K.; Narayanasamy, R.; Kambali, R.S. An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Des. 2014, 57, 394–404. [Google Scholar] [CrossRef]
- Mintmire, J.W.; White, C.T. Electronic and structural properties of carbon nanotubes. Carbon 1995, 33, 893–902. [Google Scholar] [CrossRef]
- Jin, S.B.; Shen, P.; Zhou, D.S.; Jiang, Q.C. Self-propagating high-temperature synthesis of nano-TiCx particles with different shapes by using carbon nano-tube as C source. Nanoscale Res. Lett. 2011, 6, 515. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiu, F.; Liu, J.Y.; Wang, H.Y.; Wang, J.G.; Zhu, L.; Jiang, Q.C. Microstructure and tensile properties of in situ synthesized nano-sized TiCx/2009Al composites. Mater. Des. 2015, 79, 68–72. [Google Scholar] [CrossRef]
- Robertson, J. Applications of CNTs. Mater. Today 2004, 7, 46–52. [Google Scholar] [CrossRef]
- Cha, S.I.; Kim, K.T.; Arshad, S.N. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 2005, 17, 1377–1381. [Google Scholar] [CrossRef]
- Jin, P.; Xiao, B.L.; Wang, Q.Z.; Ma, Z.Y.; Liu, Y.; Li, S. Effect of hot extrusion on interfacial microstructure and tensile properties of SiCp/2009Al composites fabricated at different hot pressing temperatures. J. Mater. Sci. Technol. 2011, 27, 518–524. [Google Scholar] [CrossRef]
- Manigandana, K.; Srivatsan, T.S.; Quickc, T. Influence of silicon carbide particulates on tensile fracture behavior of an aluminum alloy. Mater. Sci. Eng. A 2012, 534, 711–715. [Google Scholar] [CrossRef]
- Zhang, E.L.; Zeng, S.Y.; Yang, B.; Li, Q.C.; Ma, M.Z. A study on the kinetic process of reaction synthesis of TiC: Part I. Experimental research and theoretical model. Metall. Mater. Trans. A 1999, 30, 1147–1151. [Google Scholar] [CrossRef]
- Lee, W.C.; Chung, S.L. Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system. J. Am. Ceram. Soc. 1997, 80, 53–61. [Google Scholar] [CrossRef]
- Song, M.S.; Huang, B.; Zhang, M.X. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al-Ti-C elemental powders. Int. J. Refract. Met. Hard Mater. 2009, 27, 584–589. [Google Scholar] [CrossRef]
- Zhang, X.M.; Wang, W.T.; Chen, M.A.; Gao, Z.G.; Jia, Y.Z.; Ye, L.Y.; Zhang, D.W.; Liu, L.; Kuang, X.Y. Effects of Yb addition on microstructures and mechanical properties of 2519A aluminum alloy plate. Trans. Nonferrous Met. Soc. China 2010, 20, 727–731. [Google Scholar] [CrossRef]
- Bozic, D.; Dimcic, B.; Dimcic, O.; Stasic, J.; Rajkovic, V. Influence of SiC particles distribution on mechanical properties and fracture of DRA alloys. Mater. Des. 2010, 31, 134–141. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Qiu, F.; Ouyang, L.; Wang, H.; Zha, M.; Shu, S.; Zhao, Q.; Jiang, Q. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials 2015, 8, 8839-8849. https://doi.org/10.3390/ma8125495
Wang L, Qiu F, Ouyang L, Wang H, Zha M, Shu S, Zhao Q, Jiang Q. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials. 2015; 8(12):8839-8849. https://doi.org/10.3390/ma8125495
Chicago/Turabian StyleWang, Lei, Feng Qiu, Licheng Ouyang, Huiyuan Wang, Min Zha, Shili Shu, Qinglong Zhao, and Qichuan Jiang. 2015. "A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites" Materials 8, no. 12: 8839-8849. https://doi.org/10.3390/ma8125495
APA StyleWang, L., Qiu, F., Ouyang, L., Wang, H., Zha, M., Shu, S., Zhao, Q., & Jiang, Q. (2015). A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials, 8(12), 8839-8849. https://doi.org/10.3390/ma8125495