Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices
Abstract
:1. Introduction
Process | Materials | Deposition condition | Barrier layer structure | WVTR (g/m2/day) | OLED lifetime | Ref. |
---|---|---|---|---|---|---|
PEALD | Al2O3:N | TMA, O2,N2 temp:80 °C | 300 nm thick | N/D | 650 h 80 °C, 50% | [19] |
ALD | Al2O3 | TMA, H2O temp:120 °C | 25 nm thick | 1.7 × 10−5 (38 °C) | N/D | [6] |
ALD | Al2O3 | TMA, H2O temp:80 °C | 30 nm thick | 0.0615 (90 °C) | 193 h | [18] |
PEALD | Al2O3 | TMA, O2 temp:100 °C | 10–40 nm thick | 5 × 10−3 (RT) | N/D | [20] |
PEALD | TiO2 | TDMAT, O2 temp:90 °C | 80 nm thick | 0.024 (RT) | 90 h | [21] |
2. Experimental Section
3. Results and Discussion
Conditions | Water contact angles | Surface energy (mN/m) |
---|---|---|
Si(80 °C, PGT = 30 s) | 73.4° | 39.6 ± 0.2 |
Si(200 °C, PGT = 10 s) | 68.9° | 39.8 ± 0.2 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Q.; Cui, L.-S.; Zhong, C.; Jiang, Z.-Q.; Liao, L.-S. Asymmetric design of bipolar host materials with novel 1,2,4-oxadiazole unit in blue phosphorescent device. Org. Lett. 2014, 16, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Chan, K.T.; To, W.-P.; Che, C.-M. Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent Gold(III) complexes having long- lived emissive excited states. Adv. Mater. 2014, 26, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, M.; della Sala, F.; Mariano, F.; Melcarne, G.; Agostino, S.D.; Duan, Y.; Cingolani, R.; Gigli, G. Shaping white light through electroluminescent fully organic coupled microcavities. Adv. Mater. 2010, 22, 4696–4700. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Koo, W.; Therefore, F.; Sasabe, H.; Kido, J. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light Sci. Appl. 2013, 2, e74. [Google Scholar] [CrossRef]
- Aziz, H.; Popovic, Z.D.; Hu, N.X.; Hor, A.M.; Xu, G. Degradation mechanism of small molecule-based organic light-emitting devices. Science 1999, 283, 1900–1902. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Sun, F.; Yang, Y.; Chen, P.; Yang, D.; Duan, Y.; Wang, X. Thin-Film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method. ACS Appl. Mater. Interfaces 2014, 6, 3799–3804. [Google Scholar] [CrossRef] [PubMed]
- Carcia, P.F.; McLean, R.S.; Reilly, M.H.; Groner, M.D.; George, S.M. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl. Phys. Lett. 2006, 89, 031915:1–031915:3. [Google Scholar] [CrossRef]
- Park, J.-S.; Chae, H.; Chung, H.K.; Lee, S.I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 2011, 26, 034001:1–034001:8. [Google Scholar]
- Yamashita, K.; Mori, T.; Mizutani, T. Encapsulation of organic light-emitting diode using thermal chemical-vapor-deposition polymer film. J. Phys. D Appl. Phys. 2001, 34, 740–743. [Google Scholar] [CrossRef]
- Ham, H.; Park, J.; Kim, Y. Thermal and barrier properties of liquid getter-filled encapsulations for OLEDs. Org. Electron. 2011, 12, 2174–2179. [Google Scholar] [CrossRef]
- Huang, W.D.; Wang, X.H.; Sheng, M.; Xu, L.Q.; Stubhan, F.; Luo, L.; Feng, T.; Wang, X.; Zhang, F.M.; Zou, S.C. Low temperature PECVD SiNx films applied in OLED packaging. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2003, 98, 248–254. [Google Scholar] [CrossRef]
- Granstrom, J.; Swensen, J.S.; Moon, J.S.; Rowell, G.; Yuen, J.; Heeger, A.J. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Appl. Phys. Lett. 2008, 93, 193304:1–193304:3. [Google Scholar] [CrossRef]
- Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.H.; Riedl, T.; Kowalsky, W. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl. Phys. Lett. 2009, 94, 233305:1–233305:3. [Google Scholar] [CrossRef]
- Meyer, J.; Goerrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H.-H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers-a strategy for reliable encapsulation of organic electronics. Adv. Mater. 2009, 21, 1845–1849. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, M.S.; Kang, J.-W.; Kim, J.-J.; Yi, M.-S. High-quality thin-film passivation by catalyzer-enhanced chemical vapor deposition for organic light-emitting diodes. Appl. Phys. Lett. 2007, 90, 013502:1–013502:3. [Google Scholar]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.P.; Gerenser, L.J.; Jarman, C.M.; Fornalik, J.E. Thin-film encapsulation of organic light-emitting devices. Appl. Phys. Lett. 2005, 86, 223503:1–223503:3. [Google Scholar]
- Park, S.H.K.; Oh, J.; Hwang, C.S.; Lee, J.I.; Yang, Y.S.; Chu, H.Y. Ultrathin film encapsulation of an OLED by ALD. Electrochem. Solid State Lett. 2005, 8, H21–H23. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Ko, Y.-W.; Lim, J.-W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 2004, 85, 4896–4898. [Google Scholar] [CrossRef]
- Langereis, E.; Creatore, M.; Heil, S.B.S.; van de Sanden, M.C.M.; Kessels, W.M.M. Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Appl. Phys. Lett. 2006, 89, 081915:1–081915:3. [Google Scholar]
- Kim, W.S.; Ko, M.G.; Kim, T.S.; Park, S.K.; Moon, Y.K.; Lee, S.H.; Park, J.G.; Park, J.W. Titanium dioxide thin films deposited by plasma enhanced atomic layer deposition for OLED passivation. J. Nanosci. Nanotechnol. 2008, 8, 4726–4729. [Google Scholar] [CrossRef] [PubMed]
- Paetzold, R.; Winnacker, A.; Henseler, D.; Cesari, V.; Heuser, K. Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum. 2003, 74, 5147–5150. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Duan, Y.; Chen, P.; Sun, F.-B.; Duan, Y.-H.; Wang, X.; Yang, D. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature. J. Phys. Chem. C 2013, 117, 20308–20312. [Google Scholar] [CrossRef]
- Leskela, M.; Ritala, M. Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 2002, 409, 138–146. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-Y.; Liu, Y.-F.; Duan, Y.; Yang, Y.-Q.; Lu, Y.-N. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices. Materials 2015, 8, 600-610. https://doi.org/10.3390/ma8020600
Li H-Y, Liu Y-F, Duan Y, Yang Y-Q, Lu Y-N. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices. Materials. 2015; 8(2):600-610. https://doi.org/10.3390/ma8020600
Chicago/Turabian StyleLi, Hui-Ying, Yun-Fei Liu, Yu Duan, Yong-Qiang Yang, and Yi-Nan Lu. 2015. "Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices" Materials 8, no. 2: 600-610. https://doi.org/10.3390/ma8020600
APA StyleLi, H.-Y., Liu, Y.-F., Duan, Y., Yang, Y.-Q., & Lu, Y.-N. (2015). Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices. Materials, 8(2), 600-610. https://doi.org/10.3390/ma8020600