Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
Factors | Flexural Strength | Surface Roughness | Color Differences | Marginal Discrepancy |
---|---|---|---|---|
Brand | <0.001 | <0.001 | <0.001 | <0.001 |
Temperature | 0.006 | <0.001 | 0.918 | <0.001 |
Brand*Temperature | <0.001 | <0.001 | <0.001 | <0.001 |
2.1. Flexural Strength and Fracture Surface Morphology
Product | Materials * | A. 23 °C | B. 37 °C | C. 60 °C | Bonferroni |
---|---|---|---|---|---|
1. Duralay | PMMA | 57.94 ± 5.37 | 55.82 ± 7.21 | 51.87 ± 9.34 | NS |
2. Trim II | PEMA | 41.79 ± 5.37 | 43.61 ± 6.21 | 51.52 ± 5.59 | NS |
3. Luxatemp | BAC | 106.20 ± 27.16 | 103.94 ± 14.15 | 106.91 ± 19.12 | NS |
4. Protemp 4 | BAC | 87.50 ± 10.29 | 89.38 ± 8.59 | 115.41 ± 12.76 | A, B < C |
Bonferroni | 2 < 1 < 4 < 3 | 1, 2 < 3, 4 | 1, 2 < 3, 4 |
2.2. Surface Profile and Roughness
Product | Materials * | A. 23 °C | B. 37 °C | C. 60 °C | Bonferroni |
---|---|---|---|---|---|
1. Duralay | PMMA | 30 ± 14 | 70 ± 16 | 180 ± 60 | A < B < C |
2. Trim II | PEMA | 26 ± 10 | 90 ± 18 | 100 ± 40 | A, B < C |
3. Luxatemp | BAC | 53 ± 30 | 59 ± 120 | 110 ± 20 | A, B < C |
4. Protemp 4 | BAC | 3 ± 0.2 | 16 ± 2 | 18 ± 3 | NS |
Bonferroni | 4 < 3 | 4 < 1, 2, 3 | 4 < 2, 3 < 1 |
2.3. Color Stability
Product | Materials * | A. 23 °C | B. 37 °C | C. 60 °C | Bonferroni |
---|---|---|---|---|---|
1. Duralay | PMMA | 10.03 ± 1.76 | 9.86 ± 2.40 | 7.42 ± 3.42 | NS |
2. Trim II | PEMA | 14.20 ± 3.06 | 13.77 ± 4.68 | 9.00 ± 4.40 | A, B > C |
3. Luxatemp | BAC | 3.84 ± 3.17 | 6.33 ± 1.72 | 9.52 ± 1.88 | A < C |
4. Protemp 4 | BAC | 3.17 ± 0.60 | 2.16 ± 0.95 | 5.77 ± 2.10 | NS |
Bonferroni | 4 < 3 < 1 < 2 | 3, 4 < 2, 4 < 1 | 4 < 3 |
2.4. Marginal Discrepancy
Product | Materials * | A. 23 °C | B. 37 °C | C. 60 °C | Bonferroni |
---|---|---|---|---|---|
1. Duralay | PMMA | 0.32 ± 0.10 | 0.31 ± 0.06 | 0.42 ± 0.13 | NS |
2. Trim II | PEMA | 0.33 ± 0.14 | 0.35 ± 0.09 | 0.77 ± 0.17 | A, B < C |
3. Luxatemp | BAC | 0.25 ± 0.10 | 0.27 ± 0.04 | 0.58 ± 0.13 | A, B < C |
4. Protemp 4 | BAC | 0.31 ± 0.10 | 0.34 ± 0.08 | 0.49 ± 0.08 | A, B < C |
Bonferroni | N/A | N/A | 1 < 3 < 2 4 < 2 |
3. Experimental Section
Product | Manufacturer | Ingredient | Shade |
---|---|---|---|
DuraLay | Reliance Dental Mfg. Co., Chicago, IL, USA | PMMA | 62 |
Trim II | Bosworth Co., Chicago, IL, USA | PEMA | 62 |
Luxatemp Star | DMG, Hamburg, Germany | Bis-acrylic composites | A3 |
Protemp 4 | 3M ESPE, Seefeld, Germany | Bis-acrylic composites | A3 |
3.1. Flexural Strength and Fracture Surface Morphology
3.2. Surface Profile and Roughness
3.3. Color Stability
3.4. Evaluation of Marginal Discrepancy
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hamza, T.A.; Rosenstiel, S.F.; el-Hosary, M.M.; Ibraheem, R.M. Fracture resistance of fiber-reinforced PMMA interim fixed partial dentures. J. Prosthodont. 2006, 15, 223–228. [Google Scholar] [CrossRef] [PubMed]
- The glossary of prosthodontic terms. J. Prosthet. Dent. 2005, 94, 10–92.
- Burns, D.R.; Beck, D.A.; Nelson, S.K.; Committee on research in fixed prosthodontics of the academy of fixed prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar] [CrossRef]
- Revell, P.A.; Braden, M.; Freeman, M.A. Review of the biological response to a novel bone cement containing poly (ethyl methacrylate) and n-butyl methacrylate. Biomaterials 1998, 19, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Darvell, B.W. Resin restorative materials. In Materials Science for Dentistry; Darvell, B.W., Ed.; Woodhead Publishing: Cambridge, UK, 2009; p. 103. [Google Scholar]
- Eisenburger, M.; Riechers, J.; Borchers, L.; Stiesch-Scholz, M. Load-bearing capacity of direct four unit provisional composite bridges with fibre reinforcement. J. Oral Rehabil. 2008, 35, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Patras, M.; Naka, O.; Doukoudakis, S.; Pissiotis, A. Management of provisional restorations’ deficiencies: A literature review. J. Esthet. Restor. Dent. 2012, 24, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, V.; Sangeetha, A.; Kumar, V. Effect of water temperature on the fit of provisional crown margins during polymerization: An in vitro study. J. Pharm. Bioallied. Sci. 2012, 4, S376–S383. [Google Scholar] [CrossRef] [PubMed]
- Haselton, D.R.; Diaz-Arnold, A.M.; Vargas, M.A. Flexural strength of provisional crown and fixed partial denture resins. J. Prosthet. Dent. 2002, 87, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, D.A.; Shortall, A.C.; Marquis, P.M. The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials. J. Dent. 2010, 38, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Zicari, F.; Coutinho, E.; Scotti, R.; van Meerbeek, B.; Naert, I. Mechanical properties and micro-morphology of fiber posts. Dent. Mater. 2013, 29, e45–e52. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005. [Google Scholar]
- Bhushan, B. Principles of tribology. In Modern Tribology Handbook; CRC Press: Boca Raton, FL, USA, 2001; Volume 1. [Google Scholar]
- Toledano, M.; Osorio, E.; Cabello, I.; Osorio, R. Early dentine remineralisation: Morpho-mechanical assessment. J. Dent. 2014, 42, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Bayindir, F.; Kurklu, D.; Yanikoglu, N.D. The effect of staining solutions on the colour stability of provisional prosthodontic materials. J. Dent. 2012, 40, e41–e46. [Google Scholar] [CrossRef] [PubMed]
- Roselino Lde, M.; Cruvinel, D.R.; Chinelatti, M.A.; Pires-de-Souza Fde, C. Effect of brushing and accelerated ageing on colour stability and surface roughness of composites. J. Dent. 2013, 41, e54–e61. [Google Scholar]
- Yannikakis, S.A.; Zissis, A.J.; Polyzois, G.L.; Caroni, C. Colour stability of provisional resin restorative materials. J. Prosthet. Dent. 1998, 80, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Doray, P.G.; Wang, X.; Powers, J.M.; Burgess, J.O. Accelerated aging affects colour stability of provisional restorative materials. J. Prosthodont. 1997, 6, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, S.; Sarac, S.; Ozcan, M. Effects of simulated gastric juice on colour stability, surface roughness and microhardness of laboratory-processed composites. Dent. Mater. J. 2014, 33, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Aizawa, S.; Tanaka, M.; Matsuya, S.; Hasegawa, A.; Koyano, K. Effect of water temperature on the fit of provisional crown margins during polymerization. J. Prosthet. Dent. 1999, 82, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Chow, T.W. Esthetic designs of removable partial dentures. Gen. Dent. 2003, 51, 322–324. [Google Scholar] [PubMed]
- Ogawa, T.; Hasegawa, A. Effect of curing environment on mechanical properties and polymerizing behaviour of methyl-methacrylate autopolymerising resin. J. Oral Rehabil. 2005, 32, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Altintas, S.H.; Yondem, I.; Tak, O.; Usumez, A. Temperature rise during polymerization of three different provisional materials. Clin. Oral Investig. 2008, 12, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.R.; de Oliveira, R.S.; Caneppele, T.M.; Torres, C.R.; Borges, A.B.; Tay, F.R. Effects of surface treatment, hydration and application method on the bond strength of a silorane adhesive and resin system to dentine. J. Dent. 2013, 41, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mei, M.L.; Li, Q.L.; Lo, E.C.; Chu, C.H. Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue. ACS Appl. Mater. Interfaces 2014, 6, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Fais, L.M.; Fernandes-Filho, R.B.; Pereira-da-Silva, M.A.; Vaz, L.G.; Adabo, G.L. Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J. Dent. 2012, 40, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Balkenhol, M.; Knapp, M.; Ferger, P.; Heun, U.; Wostmann, B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent. Mater. 2008, 24, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, M.L.; So, S.Y.C.; Li, H.; Chu, C.-H. Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study. Materials 2015, 8, 1766-1777. https://doi.org/10.3390/ma8041766
Mei ML, So SYC, Li H, Chu C-H. Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study. Materials. 2015; 8(4):1766-1777. https://doi.org/10.3390/ma8041766
Chicago/Turabian StyleMei, May L., Sam Y. C. So, Hao Li, and Chun-Hung Chu. 2015. "Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study" Materials 8, no. 4: 1766-1777. https://doi.org/10.3390/ma8041766
APA StyleMei, M. L., So, S. Y. C., Li, H., & Chu, C. -H. (2015). Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study. Materials, 8(4), 1766-1777. https://doi.org/10.3390/ma8041766