Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Operational Parameters
2.1.1. Effect of Contact Time
2.1.2. Effect of Membrane Quantities
2.1.3. Effect of Ionic Strength
2.1.4. Effect of Temperature
2.2. Adsorption Kinetics
Kinetic Model Studies
Concentration (mg/L) | 25 | 50 |
---|---|---|
qe (exp) (mg g−1) | 9.64 | 19.12 |
Pseudo-first-order model | ||
qe (mg g−1) | 7.46 | 16.41 |
k1 (×10−3 min−1) | 0.85 | 1.20 |
R2 | 0.896 | 0.970 |
Pseudo-second-order model | ||
qe (mg g−1) | 11.01 | 21.73 |
k1 (×10−4 g mg−1 min−1) | 4.10 | 2.70 |
R2 | 0.991 | 0.992 |
Liquid film diffusion model | ||
Kfd (×10−3 min−1) | 1.96 | 2.69 |
Cfd | −0.193 | −0.153 |
R2 | 0.897 | 0.970 |
Elovich model | ||
α (mg g−1 min−1) | 8.94 | 3.74 |
β (g mg−1) | 0.48 | 0.24 |
R2 | 0.917 | 0.951 |
The Bangham equation | ||
Ko (mL/(g/L)) | 0.53 | 0.91 |
α | 0.48 | 0.40 |
R2 | 0.884 | 0.971 |
The modified Freundlich equation | ||
m | 2.12 | 2.54 |
K (L/g min) | 0.014 | 0.028 |
R2 | 0.883 | 0.971 |
2.3. Adsorption Thermodynamics
Co (mg/L) | ∆H (KJ mol−1) | ∆S (J mol−1) | ∆G (KJ mol−1) | ||
---|---|---|---|---|---|
293 K | 313 K | 323 K | |||
25 | −17.70 | −27.01 | 7.90 | 8.44 | 8.71 |
50 | −22.76 | −51.85 | 15.16 | 16.21 | 16.72 |
3. Experimental Section
3.1. Adsorbent
3.2. Adsorbate
3.3. Adsorption
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclatures
CR | congo red |
qt | Adsorption capacity at time “t” |
qe | Adsorption capacity at equilibrium |
IEC | Ion exchange capacity |
WR | Water uptake |
∆G° | Change in Gibb’s energy |
∆S° | Change in entropy |
∆H° | Change in enthalpy |
References
- Buckley, C.A. Membrane technology for treatment of dye house effluents. Water Sci. Technol. 1992, 25, 203–209. [Google Scholar]
- Cooper, P. Removing colour from dye house waste water-a critical review of technology available. J. Soc. Dyers Colour. 1993, 109, 97–100. [Google Scholar]
- Jiraratananon, R.; Sungpet, A.; Luangsowan, P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dyes and salts. Desalination 2000, 130, 177–183. [Google Scholar] [CrossRef]
- Karcher, S.; Kornmuller, A.; Jekel, M. Screening of commercial sorbents for the removal of reactive dyes. Dyes Pigments 2001, 51, 111–125. [Google Scholar] [CrossRef]
- Koyuncu, I. Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity. Desalination 2002, 143, 243–253. [Google Scholar] [CrossRef]
- Netpradit, S.; Thiravetyan, P.; Towprayoon, S. Application of waste metal hydroxide sludge for adsorption of azo reactive dyes. Water Res. 2003, 37, 763–772. [Google Scholar] [CrossRef]
- Allegre, C.; Moulin, P.; Maisseu, M.; Charbit, F. Treatment and reuse of reactive dyeing effluents. J. Membr. Sci. 2006, 269, 15–34. [Google Scholar] [CrossRef]
- Liu, H.L.; Chiou, Y.R. Optimal decolorization efficiency of reactive red 239 by UV/ZnO photocatalytic process. J. Chin. Inst. Chem. Engrs. 2006, 37, 289–298. [Google Scholar]
- Kapdan, I.K.; Kargi, F. Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit. Process Biochem. 2002, 37, 973–981. [Google Scholar] [CrossRef]
- Pala, A.; Tokat, E. Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 2002, 36, 2920–2925. [Google Scholar] [CrossRef]
- Clark, T.; Bruce, M.; Anderson, S. Decolourisation of extraction stage bleach plant effluent by combined hypochlorite oxidation and anaerobic treatment. Water Sci. Technol. 1994, 29, 421–432. [Google Scholar]
- Solozhenko, E.G.; Soboleva, N.M.; Goncharuk, V.V. Decolorization of azo dye solutions by Fenton’s oxidation. Water Res. 1995, 29, 2206–2210. [Google Scholar] [CrossRef]
- Treffry, G.K.; Buckley, C.A.; Groves, G.R. Reverse osmosis treatment and reuse of textile dyehouse effluents. Desalination 1983, 47, 313–320. [Google Scholar] [CrossRef]
- Gupta, V.K.; Srivastava, S.K.; Mohan, D. Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of Malachite green from wastewater using activated carbon and activated slag. Ind. Eng. Chem. Res. 1997, 36, 2207–2218. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas, A.I.; Saini, V.K. Removal of Rhodamine B, Fast green, Methylene blue from wastewater using red mud, an aluminium industry waste. Ind. Eng. Chem. Res. 2004, 43, 1740–1747. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K.; Van Gerven, T.; Van der Bruggen, B.; Vandecasteele, C. Removal of dyes from wastewater using bottom ash. Ind. Eng. Chem. Res. 2005, 44, 3655–3664. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mittal, A.; Gajbe, V.; Mittal, J. Removal and recovery of hazardous azo dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind. Eng. Chem. Res. 2006, 45, 1446–1453. [Google Scholar] [CrossRef]
- Simkovic, I.; Laszlo, J.A.; Thompson, A.R. Preparation of a weakly basic ion exchanger by cross linking starch with epichlorohydrin in the presence of NH4OH. Carbohydr. Polym. 1996, 30, 25–30. [Google Scholar]
- Low, K.S.; Lee, C.K. Quaternized rice husk as sorbent for reactive dyes. Biores. Technol. 1997, 61, 121–125. [Google Scholar] [CrossRef]
- Laszlo, J.A. Regeneration of azo-dyes-saturated cellulosic anion exchange resin by Burkholderia cepacia anaerobic dyes reduction. Environ. Sci. Technol. 2000, 34, 167–172. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J. Hazard. Mater. 2001, B81, 167–177. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. J. Chem. Technol. Biotechnol. 2002, 77, 1269–1279. [Google Scholar] [CrossRef]
- Tseng, R.L.; Wu, F.C.; Juang, R.S. Liquid-phase adsorption of dyes and phenols using pine wood-based activated carbons. Carbon 2003, 41, 487–495. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.; Armagan, B.; Turan, M.; Celik, M.S. Comparison of the adsorption characteristics of azo-dyes on mesoporous minerals. Dyes Pigments 2004, 62, 49–60. [Google Scholar] [CrossRef]
- Wang, C.C.; Juang, L.C.; Hsu, T.C.; Lee, C.K.; Lee, J.F.; Huang, F.C. Adsorption of basic dyes onto montmorillonite. J. Colloide Interface Sci. 2004, 273, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R.; Shim, W.G.; Moon, H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigments 2006, 69, 196–203. [Google Scholar] [CrossRef]
- Lorenc, G.E.; Gryglewics, G. Adsorption characteristics of congo red on coal based mesoporous activated carbon. Dyes Pigments 2007, 74, 34–40. [Google Scholar]
- Ofomaja, A.E.; Ho, Y.S. Equilibrium sorption of anionic dyes from aqueous solution by palm kernel fiber as sorbent. Dyes Pigments 2007, 74, 60–66. [Google Scholar] [CrossRef]
- Karcher, S.; Kornmuller, A.; Jekael, M. Anion exchange resin for removal of reactive dyes from textile wastewater. Water Res. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Liu, C.H.; Wu, J.S.; Chiu, H.C.; Suen, S.Y.; Chu, K.H. Removal of anionic reactive dyes from water using anion exchange membrane as adsorbent. Water Res. 2007, 41, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Ding, Y.; Li, M.; Yang, C.; Liu, H.; Sun, Y. Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 2005, 64, 187–192. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so called adsorption of soluble substances. Kungliga Sven. Vetenskapsakademiens Handlingar 1898, 24, 1–39. [Google Scholar]
- Kannan, N.; Sundaram, M.M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparitive study. Dyes Pigments 2001, 51, 25–40. [Google Scholar] [CrossRef]
- Ho, Y.S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Ozacar, M.; Sengil, I.A. A kinetic study of metal complex dye sorption onto pinedust. Process Biochem. 2005, 40, 565–572. [Google Scholar]
- Tutem, E.; Apak, A.; Unal, C.F. Adsorptive removal of chlorophenols from water by bituminous shale. Water Res. 1998, 32, 2315–2324. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Kumar, N.A.; Mishra, I.M. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf. A. Physichem. Eng. Aspect. 2005, 264, 17–28. [Google Scholar] [CrossRef]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, Y. Use of rice husk for adsorption for adsorption of congo red from aqueous solution in column mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Sudipta, C.; Min, S.L.; Wooa, H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2010, 101, 1800–1806. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Akhtar, S.; Zafar, S.; Shaheen, A.; Khan, M.A.; Luque, R.; Rehman, A.U. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics. Materials 2015, 8, 4147-4161. https://doi.org/10.3390/ma8074147
Khan MI, Akhtar S, Zafar S, Shaheen A, Khan MA, Luque R, Rehman AU. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics. Materials. 2015; 8(7):4147-4161. https://doi.org/10.3390/ma8074147
Chicago/Turabian StyleKhan, Muhammad Imran, Shahbaz Akhtar, Shagufta Zafar, Aqeela Shaheen, Muhammad Ali Khan, Rafael Luque, and Aziz Ur Rehman. 2015. "Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics" Materials 8, no. 7: 4147-4161. https://doi.org/10.3390/ma8074147
APA StyleKhan, M. I., Akhtar, S., Zafar, S., Shaheen, A., Khan, M. A., Luque, R., & Rehman, A. U. (2015). Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics. Materials, 8(7), 4147-4161. https://doi.org/10.3390/ma8074147