Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Materials | Chemical Composition | Bogue Composition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | SO3 | LOI * | C3S | C2S | C3A | C4AF | |
LHC | 25.3 | 3.1 | 3.4 | 62.5 | 1.7 | 0.57 | 0.10 | 0.09 | 1.9 | 0.8 | 31 | 48 | 3 | 11 |
FA | 64.0 | 21.9 | 5.5 | 3.8 | 1.2 | 1.1 | 1.0 | 1.5 | - | 2.23 | - | - | - | - |
LP | 17.7 | 8.2 | 0.6 | 47.5 | 2.1 | - | - | - | 0.3 | 22.3 | - | - | - | - |
Materials | Specific Gravity | Blaine (cm2/g) |
---|---|---|
LHC | 3.18 | 3440 |
FA | 2.25 | 3520 |
MFA | 2.27 | 5510 |
LP | 2.81 | 3420 |
2.2. Preparation of Specimens
Binder | LHC | FA | MFA | LP |
---|---|---|---|---|
LH100 | 100 | - | - | - |
LH80FA20 | 80 | 20 | - | - |
LH90MFA10 | 90 | - | 10 | - |
LH80MFA20 | 80 | - | 20 | - |
LH70MFA30 | 70 | - | 30 | - |
LH95LP5 | 95 | - | - | 5 |
LH90LP10 | 90 | - | - | 10 |
LH85LP15 | 85 | - | - | 15 |
LH80MFA15LP5 | 80 | - | 15 | 5 |
2.3. Test Methods
3. Results and discussion
3.1. Isothermal Calorimetry
Binder | 1 Day | 3 Days | ||
---|---|---|---|---|
LHC (J/g) | Binder (J/g) | LHC (J/g) | Binder (J/g) | |
LH100 | 129.50 | 129.50 | 192.01 | 192.01 |
LH80FA20 | 129.71 | 103.77 | 193.76 | 155.01 |
LH90MFA10 | 130.88 | 117.79 | 196.56 | 176.90 |
LH80MFA20 | 133.01 | 106.41 | 207.23 | 165.78 |
LH70MFA30 | 133.76 | 93.63 | 215.30 | 150.71 |
LH95LP5 | 132.01 | 125.41 | 194.50 | 184.78 |
LH90LP10 | 133.21 | 119.89 | 193.96 | 174.56 |
LH85LP15 | 136.23 | 115.80 | 199.55 | 169.62 |
LH80MFA15LP5 | 137.70 | 110.16 | 209.30 | 167.44 |
3.2. TGA
Binder | 3 days | 7 days | 28 days |
---|---|---|---|
Bound Water (g) | Bound Water (g) | Bound Water (g) | |
LH100 | 8.60 | 9.86 | 12.22 |
LH80FA20 | 8.61 | 11.03 | 12.82 |
LH80MFA20 | 9.43 | 12.05 | 13.06 |
LH80MFA15LP5 | 8.75 | 11.02 | 12.23 |
3.3. XRD
3.4. MIP
Binder | 3 Days | 7 Days | 28 Days |
---|---|---|---|
Average Pore Size (nm) | Average Pore Size (nm) | Average Pore Size (nm) | |
LH100 | 42.0 | 28.5 | 21.2 |
LH80FA20 | 49.7 | 38.1 | 18.5 |
LH80MFA20 | 49.1 | 32.9 | 15.0 |
LH80MFA15LP5 | 46.3 | 33.6 | 16.7 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vance, K.; Aguayo, M.; Oey, T.; Sant, G.; Neithalath, N. Hydration and strength development in ternary Portland cement blends containing limestone and fly ash or metakaolin. Cem. Concr. Compos. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- De Schutter, G. Hydration and temperature development of concrete made with blast-furnace slag cement. Cem. Concr. Res. 1999, 29, 143–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Liu, S. Study on the hydration heat of binder paste in high-performance concrete. Cem. Concr. Res. 2002, 32, 1483–1488. [Google Scholar] [CrossRef]
- Kumar, A.; Oey, T.; Falla, G.P.; Henkensiefken, R.; Neithalath, N.; Sant, G. A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. Constr. Build. Mater. 2013, 43, 428–435. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997; pp. 230–232. [Google Scholar]
- American Society for Testing and Materials. Standard Specification for Portland Cement; ASTM C 150/C150M-15; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- BSI Standards Publication. Cement. Composition, Specifications and Conformity Criteria for Common Cements; BS EN 197-1:2011; British Standards Institute: London, UK, 2011. [Google Scholar]
- BSI Standards Publication. Cement. Composition, Specifications and Conformity Criteria for very Low Heat Special Cements; BS EN 14216:2015; British Standards Institute: London, UK, 2015. [Google Scholar]
- Sasaki, N.; Goto, T.; Takao, N.; Naruse, H. Improvement of thermal crack resistance using super low heat Portland cement whose belite is not less than 70 percent. Cem. Sci. Concr. Technol. 2011, 65, 319–325. [Google Scholar] [CrossRef]
- Mori, K.; Fukunaga, T.; Sugiyama, M.; Iwase, K.; Oishi, K.; Yamamuro, O. Hydration properties and compressive strength development of Low Heat Cement. J. Phys. Chem. Solids 2012, 73, 1274–1277. [Google Scholar] [CrossRef]
- Lee, K.C.; Cho, J.W.; Jung, S.H.; Kim, J.H.J. Study on hydration heat of blended belite binder. J. Korea Concr. Inst. 2011, 23, 145–150. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard Test Methods for Chemical Analysis of Hydraulic Cement; ASTM C 114-15; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- American Society for Testing and Materials. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM C 618-12a; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- American Society for Testing and Materials. Standard Test Methods for Density of Hydraulic Cement; ASTM C 188-14; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- American Society for Testing and Materials. Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus; ASTM C 204-11e1; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- American Society for Testing and Materials. Standard Test Methods for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry; ASTM C 1702-15a; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- de Weerdt, K.; Sellevold, E.; Kjellsen, K.O.; Justnes, H. Fly ash-limestone ternary cement: Effect of component fineness. Adv. Cem. Res. 2011, 23, 203–214. [Google Scholar] [CrossRef]
- Deschner, F.; Winnefeld, F.; Lothenbach, B.; Seufert, S.; Schwesig, P.; Dittrich, S.; Goetz-Neunhoeffer, F.; Neubauer, J. Hydration of Portland cement with high replacement by siliceous fly ash. Cem. Concr. Res. 2012, 42, 1389–1400. [Google Scholar] [CrossRef]
- Gallucci, E.; Mathur, P.; Scrivener, K. Microstructural development of early age hydration shells around cement grains. Cem. Concr. Res. 2010, 40, 4–13. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsin, T. Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 2007, 21, 1534–1541. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Constr. Build. Mater. 2008, 22, 1634–1642. [Google Scholar] [CrossRef]
- Bouasker, M.; Mounanga, P.; Turcruy, P.; Loukili, A.; Khelidj, A. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cem. Concr. Comp. 2008, 30, 13–22. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.; Lu, L.; Cheng, X. Effects of slag and limestone powder on the hydration and hardening process of alite-barium calcium sulphoaluminate cement. Constr. Build. Mater. 2012, 35, 227–231. [Google Scholar]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Thongsanitgarn, P.; Wongkeo, W.; Chaipanich, A.; Poon, C.S. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr. Build. Mater. 2014, 66, 410–417. [Google Scholar] [CrossRef]
- Péra, J.; Husson, S.; Guilhot, B. Influence of finely ground limestone on cement hydration. Cem. Concr. Compos. 1999, 21, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Baert, G.; Hostel, S.; de Schutter, G.; de Belie, N. Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. J. Therm. Anal. Calorim. 2008, 94, 485–492. [Google Scholar] [CrossRef]
- Lam, L.; Wong, Y.L.; Poon, C.S. Degree of hydration and gel/space ratio of high volume fly ash/cement systems. Cem. Concr. Res. 2000, 30, 747–756. [Google Scholar] [CrossRef]
- Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.H.; Daimon, M. Hydration of fly ash cement. Cem. Concr. Res. 2005, 35, 1135–1140. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, S.S.; Monteiro, P.J.M. Effect of fly ash fineness on temperature rise, setting, and strength development of mortar. J. Mater. Civ. Eng. 2012, 24, 499–505. [Google Scholar] [CrossRef]
- Kiattikomol, K.; Jaturapitakkul, C.; Songpiriyakij, S.; Chutubtim, S. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cem. Concr. Compos. 2001, 23, 335–343. [Google Scholar] [CrossRef]
- Bonavetti, V.L.; Rahhal, V.F.; Irassar, E.F. Studies on the carboaluminate formation in limestone filler-blended cements. Cem. Concr. Res. 2001, 31, 853–859. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Yang, K.-H.; Moon, G.-D. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder. Materials 2015, 8, 5847-5861. https://doi.org/10.3390/ma8095277
Kim S-J, Yang K-H, Moon G-D. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder. Materials. 2015; 8(9):5847-5861. https://doi.org/10.3390/ma8095277
Chicago/Turabian StyleKim, Si-Jun, Keun-Hyeok Yang, and Gyu-Don Moon. 2015. "Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder" Materials 8, no. 9: 5847-5861. https://doi.org/10.3390/ma8095277
APA StyleKim, S.-J., Yang, K.-H., & Moon, G.-D. (2015). Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder. Materials, 8(9), 5847-5861. https://doi.org/10.3390/ma8095277