Next Article in Journal
Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets
Previous Article in Journal
Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Jood, P. and Ohta, M. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides. Materials 2015, 8, 1124–1149

Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
*
Author to whom correspondence should be addressed.
Materials 2015, 8(9), 6482-6483; https://doi.org/10.3390/ma8095315
Submission received: 8 September 2015 / Accepted: 8 September 2015 / Published: 21 September 2015
(This article belongs to the Section Energy Materials)
The authors wish to make the following corrections to this paper [1].
The authors regret that the lattice thermal conductivity (κat) values of some samples in Table 1 and thermoelectric figure of merit (ZT) values of some samples in Table 2 were not correct. The tables with correct κlat and ZT values are shown below. The authors would like to apologize for any inconvenience caused.
Table 1. Seebeck coefficient (S), electrical resistivity (ρ), carrier mobility (μ), power factor (S2/ρ), lattice thermal conductivity (κlat), and thermoelectric figure of merit (ZT) at room temperature in the in-plane (ab-plane) and out-of-plane (c-axis) directions for a single crystal of nearly stoichiometric TiS2 [2] and polycrystalline Ti1.008S2 [3].
Table 1. Seebeck coefficient (S), electrical resistivity (ρ), carrier mobility (μ), power factor (S2/ρ), lattice thermal conductivity (κlat), and thermoelectric figure of merit (ZT) at room temperature in the in-plane (ab-plane) and out-of-plane (c-axis) directions for a single crystal of nearly stoichiometric TiS2 [2] and polycrystalline Ti1.008S2 [3].
Sample DirectionS (μV·K−1)ρ (μΩ m)μ (cm2·V−1·s−1)S2/ρ (μW·K−2·m−1)κlat (W·K−1·m−1)ZT
Single crystalIn-plane−251171537106.350.16
Single crystalOut-of-plane-13,0000.017-4.21-
PolycrystallineIn-plane−806.22.310302.00.12
PolycrystallineOut-of-plane−84111.26301.80.10
Table 2. Seebeck coefficient (S), electrical resistivity (ρ), total thermal conductivity (κtotal), lattice thermal conductivity (κlat), power factor (S2/ρ), and thermoelectric figure of merit (ZT) in the in-plane (ab-plane) and out-of-plane (c-axis) directions of state-of-the-art misfit layered sulfides: [MS]1+mTS2 (M = La, Yb; T = Cr, Nb) [4,5].
Table 2. Seebeck coefficient (S), electrical resistivity (ρ), total thermal conductivity (κtotal), lattice thermal conductivity (κlat), power factor (S2/ρ), and thermoelectric figure of merit (ZT) in the in-plane (ab-plane) and out-of-plane (c-axis) directions of state-of-the-art misfit layered sulfides: [MS]1+mTS2 (M = La, Yb; T = Cr, Nb) [4,5].
SampleDirectionT (K)ρ (μΩ·m)S (μV·K−1)κtotal (W·K−1·m−1)κlat(W·K−1·m−1)S2/ρ (μW·K−2·m−1)ZTReference
(Yb2S2)0.62NbS2In-plane30019.0600.800.412000.1[5]
(La2S2)0.62NbS2In-plane30011.522--50-[5]
(LaS)1.14NbS2aIn-plane3007.6372.51.501770.02[4]
95022.0832.000.933160.15
Out-of-plane30013.3252.041.48490.01
95032.1721.620.881620.09
(LaS)1.14NbS2bIn-plane3005.2354.883.452330.02[4]
95016.9833.251.864050.12
Out-of-plane3009.3251.560.75700.01
95028.5561.340.521110.08
(LaS)1.2CrS2aIn-plane950207−1721.161.041430.11[4]
Out-of-plane950223−1741.020.911370.13
(LaS)1.2CrS2bIn-plane950171−1721.251.111740.14[4]
Out-of-plane950278−1540.920.84840.08
a Small grains (~1 μm), weak/random orientation of grains; b Large grains (>20 μm), strong orientation of grains perpendicular to the pressing direction.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Jood, P.; Ohta, M. Hierarchical architecturing for layered thermoelectric sulfides and chalcogenides. Materials 2015, 8, 1124–1149. [Google Scholar] [CrossRef]
  2. Imai, H.; Shimakawa, Y.; Kubo, Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B 2001, 64, 241104(R):1–241104(R):4. [Google Scholar] [CrossRef]
  3. Ohta, M.; Satoh, S.; Kuzuya, T.; Hirai, S.; Kunii, M.; Yamamoto, A. Thermoelectric properties of Ti1+xS2 prepared by CS2 sulfurization. Acta Mater. 2012, 60, 7232–7240. [Google Scholar] [CrossRef]
  4. Jood, P.; Ohta, M.; Nishiate, H.; Yamamoto, A.; Lebedev, O.I.; Berthebaud, D.; Suekuni, K.; Kunii, M. Microstructural control and thermoelectric properties of misfit layered sulfides (LaS)1+mTS2 (T = Cr, Nb): The natural superlattice systems. Chem. Mater. 2014, 26, 2684–2692. [Google Scholar]
  5. Miyazaki, Y.; Ogawa, H.; Nakajo, T.; Kikuchii, Y.; Hayashi, K. Crystal structure and thermoelectric properties of misfit-layered sulfides [Ln2S2]pNbS2 (Ln = Lanthanides). J. Electron. Mater. 2013, 42, 1335–1339. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Jood, P.; Ohta, M. Jood, P. and Ohta, M. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides. Materials 2015, 8, 1124–1149. Materials 2015, 8, 6482-6483. https://doi.org/10.3390/ma8095315

AMA Style

Jood P, Ohta M. Jood, P. and Ohta, M. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides. Materials 2015, 8, 1124–1149. Materials. 2015; 8(9):6482-6483. https://doi.org/10.3390/ma8095315

Chicago/Turabian Style

Jood, Priyanka, and Michihiro Ohta. 2015. "Jood, P. and Ohta, M. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides. Materials 2015, 8, 1124–1149" Materials 8, no. 9: 6482-6483. https://doi.org/10.3390/ma8095315

Article Metrics

Back to TopTop