A Size and Boundary Effects Model for Quasi-Brittle Fracture
Abstract
:1. Introduction
2. Size and Boundary Effects
2.1. Size Effect Induced by Specimen Sizes
2.2. Boundary Effect Induced by Crack Sizes
3. Proposed Failure Model
3.1. Derivative of the Energy Release Rate
3.2. Asymptotic Model
3.3. Proposed Failure Model for Geometrically Similar Specimens
4. Model Validations
4.1. Concrete Experiments
4.2. Limestone Experiments
4.3. Hardened Cement Paste Experiments
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BEM | Boundary Effect Model |
C-TPB | Cracked Three-Point Bending |
FPZ | Fracture Process Zone |
LEFM | Linear Elastic Fracture Mechanics |
SEL | Size Effect Law |
SiC | Silicon Carbide |
TCDs | Theories of Critical Distance |
USEL | Universal Size Effect Law |
Appendix A. Comparison of the Proposed Model with the Hu–Duan Boundary Effect Model
Appendix B. Comparison of the Proposed Model with Type 2 SEL
References
- Bažant, Z. Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. 1984, 110, 518–535. [Google Scholar] [CrossRef]
- Bažant, Z.P. Scaling theory for quasibrittle structural failure. Proc. Natl. Acad. Sci. USA 2004, 101, 13400–13407. [Google Scholar] [CrossRef] [PubMed]
- Bažant, Z.P. Scaling of Structural Strength; Butterworth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Bažant, Z.P.; Kazemi, M.T. Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. Int. J. Fract. 1991, 51, 121–138. [Google Scholar]
- Hu, X.; Wittmann, F. Size effect on toughness induced by crack close to free surface. Eng. Fract. Mech. 2000, 65, 209–221. [Google Scholar] [CrossRef]
- Hu, X.Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites. Eng. Fract. Mech. 2002, 69, 555–564. [Google Scholar] [CrossRef]
- Duan, K.; Hu, X.; Wittmann, F. Scaling of quasi-brittle fracture: Boundary and size effect. Mech. Mater. 2006, 38, 128–141. [Google Scholar] [CrossRef]
- Hu, X.; Duan, K. Size effect: Influence of proximity of fracture process zone to specimen boundary. Eng. Fract. Mech. 2007, 74, 1093–1100. [Google Scholar] [CrossRef]
- Irwin, G. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar]
- Neuber, H. Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material; Springer: Berlin, Germany, 1958. [Google Scholar]
- Peterson, R. Notch sensitivity. In Metal Fatigue; McGraw-Hill: New York, USA, 1959; pp. 293–306. [Google Scholar]
- Taylor, D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Berto, F.; Lazzarin, P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R Rep. 2014, 75, 1–48. [Google Scholar] [CrossRef]
- Waddoups, M.E.; Eisenmann, J.R.; Kaminski, B.E. Macroscopic fracture mechanics of advanced composite materials. J. Compos. Mater. 1971, 5, 446–454. [Google Scholar] [CrossRef]
- El Haddad, M.; Smith, K.; Topper, T. Fatigue crack propagation of short cracks. J. Eng. Mater. Technol. 1979, 101, 42–46. [Google Scholar] [CrossRef]
- Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005, 72, 1021–1038. [Google Scholar] [CrossRef]
- Lazzarin, P.; Zambardi, R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 2001, 112, 275–298. [Google Scholar] [CrossRef]
- Cornetti, P.; Pugno, N.; Carpinteri, A.; Taylor, D. Finite fracture mechanics: A coupled stress and energy failure criterion. Eng. Fract. Mech. 2006, 73, 2021–2033. [Google Scholar] [CrossRef]
- Leguillon, D. Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A/Solids 2002, 21, 61–72. [Google Scholar] [CrossRef]
- Maimí, P.; González, E.V.; Gascons, N.; Ripoll, L. Size effect law and critical distance theories to predict the nominal strength of quasibrittle structures. Appl. Mech. Rev. 2013, 65, 020803. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. Mater. Struct. 1995, 28, 435–443. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B. Size effects on concrete fracture energy: Dimensional transition from order to disorder. Mater. Struct. 1996, 29, 259–266. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B.; Ferro, G. Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Mater. Struct. 1995, 28, 311–317. [Google Scholar] [CrossRef]
- Karihaloo, B. Size effect in shallow and deep notched quasi-brittle structures. Int. J. Fract. 1999, 95, 379–390. [Google Scholar] [CrossRef]
- Yu, Q.; Le, J.L.; Hoover, C.G.; Bažant, Z.P. Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture. J. Eng. Mech. 2009, 136, 40–50. [Google Scholar] [CrossRef]
- Hoover, C.G.; Bažant, Z.P. Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests. J. Eng. Mech. 2014, 140, 480–486. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Yu, Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength. J. Eng. Mech. 2009, 135, 78–84. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Li, Z. Zero-Brittleness size-effect method for one-size fracture test of concrete. J. Eng. Mech. 1996, 122, 458–468. [Google Scholar] [CrossRef]
- Bažant, Z. Scaling of quasibrittle fracture: Asymptotic analysis. Int. J. Fract. 1997, 83, 19–40. [Google Scholar] [CrossRef]
- Hoover, C.G.; Bažant, Z.P. Universal size-shape effect law based on comprehensive concrete fracture tests. J. Eng. Mech. 2014, 140, 473–479. [Google Scholar] [CrossRef]
- Tada, H.; Paris, P.; Irwin, G. The Stress Analysis of Cracks Handbook; ASME Press: New York, NY, USA, 2000. [Google Scholar]
- Bažant, Z.P.; Kim, J.K.; Pfeiffer, P.A. Nonlinear fracture properties from size effect tests. J. Struct. Eng. 1986, 112, 289–307. [Google Scholar] [CrossRef]
- Jenq, Y.; Shah, S. Nonlinear fracture parameters for cement based composites: Theory and experiments. In Application of Fracture Mechanics to Cementitious Composites; Springer: Dordrecht, The Netherlands, 1985; pp. 319–359. [Google Scholar]
- Bažant, Z.; Gettu, R.; Kazemi, M. Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 43–51. [Google Scholar] [CrossRef]
- Jenq, Y.; Shah, S.P. Two parameter fracture model for concrete. J. Eng. Mech. 1985, 111, 1227–1241. [Google Scholar] [CrossRef]
- Schmidt, R.A. Fracture-toughness testing of limestone. Exp. Mech. 1976, 16, 161–167. [Google Scholar] [CrossRef]
- Karihaloo, B.; Abdalla, H.; Xiao, Q. Size effect in concrete beams. Eng. Fract. Mech. 2003, 70, 979–993. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Koval, G.; Chazallon, C. A Size and Boundary Effects Model for Quasi-Brittle Fracture. Materials 2016, 9, 1030. https://doi.org/10.3390/ma9121030
Gao X, Koval G, Chazallon C. A Size and Boundary Effects Model for Quasi-Brittle Fracture. Materials. 2016; 9(12):1030. https://doi.org/10.3390/ma9121030
Chicago/Turabian StyleGao, Xiaofeng, Georg Koval, and Cyrille Chazallon. 2016. "A Size and Boundary Effects Model for Quasi-Brittle Fracture" Materials 9, no. 12: 1030. https://doi.org/10.3390/ma9121030
APA StyleGao, X., Koval, G., & Chazallon, C. (2016). A Size and Boundary Effects Model for Quasi-Brittle Fracture. Materials, 9(12), 1030. https://doi.org/10.3390/ma9121030