Spectrophotometric Evaluation of Polyetheretherketone (PEEK) as a Core Material and a Comparison with Gold Standard Core Materials
Abstract
:1. Introduction
- (1)
- There is no difference in the CieLab-System parameters of assemblies and the modification of the CieLab-System parameters for each veneering material separately.
- (2)
- The veneering materials have no impact on CieLab-System parameters.
- (3)
- The core materials within given assemblies have no impact on the CieLab-System parameters.
- (4)
- The core material has no impact on the modification of the CieLab-System parameters between assembly and veneering material.
- (5)
- The veneering materials have no impact on the VITA EasyShade parameters.
- (6)
- The core materials have no impact on the VITA EasyShade parameters.
2. Materials and Methods
2.1. Specimen Preparation
2.2. Specimen Assembly and Color Determination
2.3. Statistical Evaluation
3. Results
3.1. The Evaluation of the Color Properties of the Veneering Materials
3.2. Influencing the Overall CieLab-System Parameters through the Core Material
4. Discussion
5. Conclusions
- PEEK as core material showed no differing tendencies when compared to gold standard core materials such as ZrO2 and CoCrMo with respect to the CieLab-System parameters of the assemblies and the modification of the CieLab-System parameters for each individual veneering material.
- Different veneering materials showed different CieLab-System and VITA EasyShade outcomes.
- The relative frequency of the measured VITA EasyShade parameters of PEEK cores showed comparable results with the gold standard CoCrMo, regardless of the veneering material used.
- Core materials and the modification between assembly and veneering material showed significant impact on the CieLab-System and VITA Easy Shade results, i.e., the combination of core and veneering material was influential.
- Veneering materials influenced the VITA EasyShade parameters of the combination from core and veneering.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ZrO2 | zirconia |
TiO2 | titanium oxide |
CoCrMo | cobalt–chromium–molybdenum alloy |
CAD/CAM | computer-aided design/computer-aided manufacturing |
References
- Batson, E.R.; Cooper, L.F.; Duqum, I.; Mendonca, G. Clinical outcomes of three different crown systems with CAD/CAM technology. J. Prosthet. Dent. 2014, 112, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Pjetursson, B.E.; Asgeirsson, A.G.; Zwahlen, M.; Sailer, I. Improvements in implant dentistry over the last decade: Comparison of survival and complication rates in older and newer publications. Int. J. Oral Maxillofac. Implants 2014, 29, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, S.E.; Tveit, A.B.; Gaarden, T.; Sandvik, L.; Espelid, I. Longevity of posterior dental restorations and reasons for failure. Eur. J. Oral Sci. 2012, 120, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D. Optimizing smile composition and esthetics with resin composites and other conservative esthetic procedures. Eur. J. Esthet. Dent. 2008, 3, 14–29. [Google Scholar] [PubMed]
- Guess, P.C.; Att, W.; Strub, J.R. Zirconia in fixed implant prosthodontics. Clin. Implant. Dent. Relat. Res. 2012, 14, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Sinmazisik, G.; Demirbas, B.; Tarcin, B. Influence of dentin and core porcelain thickness on the color of fully sintered zirconia ceramic restorations. J. Prosthet. Dent. 2014, 111, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, M.; Fahl, N.; De Sousa, A.M.; De Oliveira, O.B., Jr. Direct esthetic restorations based on translucency and opacity of composite resins. J. Esthet. Rest. Dent. 2011, 23, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Beuer, F.; Wimmer, T.; Jahn, D.; Sener, B.; Roos, M.; Schmidlin, P.R. Polyetheretherketone-a suitable material for fixed dental prostheses? J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Jordan, P.; Schmidlin, P.R.; Roos, M.; Eichberger, M.; Gernet, W.; Keul, C. PEEK surface treatment effects on tensile bond strength to veneering resins. J. Prosthet. Dent. 2014, 112, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Uhrenbacher, J.; Schmidlin, P.R.; Keul, C.; Eichberger, M.; Roos, M.; Gernet, W.; Stawarczyk, B. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J. Prosthet. Dent. 2014, 112, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, M.D. Color appearance models and complex visual stimuli. J. Dent. 2010, 38, e25–e33. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.J.; Trushkowsky, R.D.; Paravina, R.D. Dental color matching instruments and systems. Review of clinical and research aspects. J. Dent. 2010, 38, e2–e16. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, E.A.; Durkan, R.; Koroglu, A.; Bagis, B. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA-based denture resins. J. Appl. Biomater. Funct. Mater. 2014, 30, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.V.; Nagaraj, H.; Siddaraju, K.; Poluri, R.K. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins. J. Int. Oral Health 2015, 7, 63–70. [Google Scholar] [PubMed]
- Yuan, K.; Sun, X.; Wang, F.; Chen, J.H. In vitro and in vivo evaluations of three computer-aided shade matching instruments. Oper. Dent. 2012, 37, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Khashayar, G.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A.J. Data comparison between two dental spectrophotometers. Oper. Dent. 2012, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, S.G.; Tripodakis, A.P.; Doukoudakis, A.A. Spectrophotometric evaluation of the optical influence of different metal alloys and porcelains in the metal-ceramic complex. J. Prosthet. Dent. 2004, 92, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Jarad, F.D.; Moss, B.W.; Youngson, C.C.; Russell, M.D. The effect of enamel porcelain thickness on color and the ability of a shade guide to prescribe chroma. Dent. Mater. 2007, 23, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Niu, E.; Agustin, M.; Douglas, R.D. Color match of machinable lithium disilicate ceramics: Effects of foundation restoration. J. Prosthet. Dent. 2013, 110, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Kuehni, R. Marcus M An experiment in visual scaling of small color differences. Color 1979, 4, 83–91. [Google Scholar]
- Ruyter, I.E.; Nilner, K.; Moller, B. Color stability of dental composite resin materials for crown and bridge veneers. Dent. Mater. 1987, 3, 246–251. [Google Scholar] [CrossRef]
- Um, C.M.; Ruyter, I.E. Staining of resin-based veneering materials with coffee and tea. Quintessence Int. 1991, 22, 377–386. [Google Scholar] [PubMed]
- Chaiyabutr, Y.; Kois, J.C.; Lebeau, D.; Nunokawa, G. Effect of abutment tooth color, cement color, and ceramic thickness on the resulting optical color of a CAD/CAM glass-ceramic lithium disilicate-reinforced crown. J. Prosthet. Dent. 2011, 105, 83–90. [Google Scholar] [CrossRef]
- Guth, J.F.; Zuch, T.; Zwinge, S.; Engels, J.; Stimmelmayr, M.; Edelhoff, D. Optical properties of manually and CAD/CAM-fabricated polymers. Dent. Mater. J. 2013, 32, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Bagis, B.; Turgut, S. Optical properties of current ceramics systems for laminate veneers. J. Dent. 2013, 41, e24–e30. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.D.; Przybylska, M. Predicting porcelain thickness required for dental shade matches. J. Prosthet. Dent. 1999, 82, 143–149. [Google Scholar] [CrossRef]
Brands | Material Type | Manufacturer | Batch No. | Composition |
---|---|---|---|---|
Core Materials | ||||
Dentokeep | PEEK | nt-trading, Karlsruhe, Germany | 11DK14Q01 | PEEK, 20 wt % anorganic fillers |
IPS e.max ZirCAD | ZrO2 | Ivoclar Vivadent, Schaan, Liechtenstein | N35700 | ZrO2, HFO2, Al2O3 and other oxides |
Remanium GM 800+ | CoCrMo | Dentanium, Ispringen, Germany | 816 | Co 63.3 wt %, Cr 30 wt %, Mo 5 wt % |
Bio-Titan | TiO2 | DCS Dental AG, Allschwil, Switzerland | 8797 | pure titanium grade 4 |
Veneering Materials | ||||
VITA Mark II A3 | glass-ceramic | VITA Zahnfabrik, Bad Säckingen, Germany | 29380 | SiO2: 56–64 wt %, Al2O3: 20–23 wt %, Na2O: 6–9 wt %, K2O: 6–8 wt %, CaO: 0.3–0.6 wt % |
IPS e.max CAD A3 | lithium disilicate glass-ceramic | Ivoclar Vivadent, Schaan, Liechtenstein | S14448 | SiO2, Li2O, K2O, MgO, Al2O3, P2O5 and other oxides |
LAVA Ultimate | resin nano ceramic | 3M ESPE, Seefeld, Germany | N435300 | Polymer with appr. 80 wt % anorganic filler |
VITA Enamic | hybrid dental ceramic | VITA Zahnfabrik, Bad Säckingen, Germany | 36810 | 86 wt % feldspar ceramic, 14 wt % polymer |
VITA EasyShade | Lab-Values | VITA Mark II | VITA Enamic | LAVA Ultimate | IPS e.max CAD |
---|---|---|---|---|---|
A2 | A3.5 | B2 | B3 | ||
CieLab-System | L mean (SD) | 62.7 (1.3) b | 60.4 (1.3) a | 60.1 (1.9) a | 62.7 (0.7) b |
a mean (SD) | −0.1 (0.6) c | 0.9 (0.7) d | −1.6 (0.4) a | −0.5 (0.8) b | |
b mean (SD) | 9.0 (2.9) b | 11.5 (2.4) c | 2.4 (2.3) a | 9.7 (2.4) b | |
E mean (SD) | 63.4 (1.5) c | 61.5 (1.7) b | 60.2 (1.9) a | 63.6 (0.9) b |
Veneering Materials | ||||
Tooth Shade (Chairside) | VITA Mark II (A2) | VITA Enamic (A3.5) | LAVA Ultimate (B2) | IPS e.max CAD (B3) |
A1 | 39.4 (32;47) | 0 (0;2) | 36.9 (30;45) | 14.9 (7.6;29.6) |
A2 | 36.3 (29;44) | 10.6 (7;16) | 18.8 (13;26) | 12.5 (8;19) |
A3 | 15.6 (11;22) | 12.5 (8;19) | 3.8 (2;8) | 10.1 (4.8;14.0) |
A3.5 | 0 (0;2) | 13.1 (9;19) | 0 (0;2) | 0 (0;2) |
A4 | 0 (0;2) | 8.1 (5;13) | 0 (0;2) | 0 (0;2) |
B1 | 0.6 (0;3) | 0 (0;2) | 5.3 (3;10) | 0 (0;2) |
B2 | 8.1 (5;13) | 1.9 (1;5) | 31.9 (25;39) | 20.6 (15;28) |
B3 | 0 (0;2) | 53.8 (46;61) | 0 (0;2) | 46.3 (39;54) |
C2 | 0 (0;2) | 0 (0;2) | 3.8 (2;8) | 0 (0;2) |
Core Materials | ||||
Tooth shade (chairside) | PEEK | ZrO2 | CoCrMo | TiO2 |
A1 | 25 (19;32) | 25.6 (19;33) | 25.6 (19;33) | 6.9 (4;12) |
A2 | 16.9 (12;23) | 9.4 (6;15) | 16.3 (11;23) | 35.6 (29;43) |
A3 | 17.5 (12;23) | 18.8 (13;26) | 10 (6;16) | 0 (0;2) |
A3.5 | 0 (0;2) | 3.1 (3;10) | 0.6 (0;3) | 9.4 (6;15) |
A4 | 0 (0;2) | 0 (0;2) | 0 (0;2) | 8.1 (5;13) |
B1 | 0 (0;2) | 5.6 (3;10) | 0 (0;2) | 0 (0;2) |
B2 | 9.4 (6;15) | 19.4 (14;25) | 17.5 (12;24) | 16.3 (11;23) |
B3 | 31.3 (25;39) | 18.1 (13;25) | 30.6 (24;38) | 20 (15;27) |
C2 | 0 (0;2) | 0 (0;2) | 0 (0;2) | 3.8 (2;8) |
VITA EasyShade | Lab-Values | VITA Mark II/A2 | VITA Enamic/A3.5 | LAVA Ultimate/B2 | IPS e.max CAD/B3 |
---|---|---|---|---|---|
PEEK | |||||
CieLab-System | ∆L mean (SD) | −12.1 (5.2) | −11.2 (5.9) | −13.4 (6.6) | −10.3 (5.2) |
∆a mean (SD) | −0.8 (0.3) | −1.4 (0.1) | −2.3 (0.5) | −1.9 (0.1) | |
∆b mean (SD) | −7.4 (1.8) | −7.6 (1.6) | −11.7 (1.5) | −8.4 (2.1) | |
∆E mean (SD) | 14.3 (5.1) | 13.8 (5.8) | 18.4 (5.4) | 13.6 (5.3) | |
ZrO2 | |||||
CieLab-System | ∆L mean (SD) | −10.5 (4.8) | −10.1 (5.4) | −12.1 (6.1) | −9.2 (4.7) |
∆a mean (SD) | −1.1 (0.5) | −0.5 (0.3) | −1.1 (0.1) | −1.1 (0.1) | |
∆b mean (SD) | −5.4 (1.6) | −6.0 (0.9) | −8.4 (1.5) | −6.8 (1.5) | |
∆E mean (SD) | 12.1 (4.6) | 11.9 (5.0) | 15.0 (5.8) | 11.7 (4.6) | |
CoCrMo | |||||
CieLab-System | ∆L mean (SD) | −10.4 (4.7) | −9.8 (5.4) | −11.7 (6.1) | −8.9 (4.6) |
∆a mean (SD) | −0.3 (0.3) | −0.8 (0.1) | −1.4 (0.1) | −1.3 (0.1) | |
∆b mean (SD) | −5.5 (1.6) | −5.9 (1.1) | −8.3 (1.8) | −6.7 (1.6) | |
∆E mean (SD) | 11.9 (4.5) | 11.6 (5.1) | 14.5 (6.0) | 11.3 (4.6) | |
TiO2 | |||||
CieLab-System | ∆L mean (SD) | −4.8 (2.3) | −4.5 (2.5) | −5.3 (2.9) | −4.1 (2.1) |
∆a mean (SD) | −0.5 (0.5) | −0.7 (0.4) | −1.6 (0.6) | −1.1 (0.5) | |
∆b mean (SD) | −4.2 (1.8) | −4.1 (1.6) | −5.3 (2.2) | −4.0 (1.6) | |
∆E mean (SD) | 6.5 (2.9) | 6.2 (2.9) | 7.7 (3.6) | 5.8 (2.7) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawarczyk, B.; Schmid, P.; Roos, M.; Eichberger, M.; Schmidlin, P.R. Spectrophotometric Evaluation of Polyetheretherketone (PEEK) as a Core Material and a Comparison with Gold Standard Core Materials. Materials 2016, 9, 491. https://doi.org/10.3390/ma9060491
Stawarczyk B, Schmid P, Roos M, Eichberger M, Schmidlin PR. Spectrophotometric Evaluation of Polyetheretherketone (PEEK) as a Core Material and a Comparison with Gold Standard Core Materials. Materials. 2016; 9(6):491. https://doi.org/10.3390/ma9060491
Chicago/Turabian StyleStawarczyk, Bogna, Philipp Schmid, Malgorzata Roos, Marlis Eichberger, and Patrick R. Schmidlin. 2016. "Spectrophotometric Evaluation of Polyetheretherketone (PEEK) as a Core Material and a Comparison with Gold Standard Core Materials" Materials 9, no. 6: 491. https://doi.org/10.3390/ma9060491
APA StyleStawarczyk, B., Schmid, P., Roos, M., Eichberger, M., & Schmidlin, P. R. (2016). Spectrophotometric Evaluation of Polyetheretherketone (PEEK) as a Core Material and a Comparison with Gold Standard Core Materials. Materials, 9(6), 491. https://doi.org/10.3390/ma9060491