Redefining Agricultural Residues as Bioenergy Feedstocks
Abstract
:1. Introduction
2. Can Agriculture Help Mitigate Climate Change?
2.1. Climate Change and Agriculture
2.2. Emissions of Greenhouse Gases from Agriculture
2.3. Plant Biomass as Energy Resource
3. Dual Purpose Crops Optimized for Grain-Biomass Production
3.1. Preserved Crop Nutritional Quality
3.2. Enhanced Biomass Conversion Qualities
3.3. High Biomass Yield
3.4. Reduced Grain/Biomass Moisture at Harvest
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adrados, A.; De Marco, I.; López-Urionabarrenechea, A.; Solar, J.; Caballero, B.M.; Gastelu, N. Biomass pyrolysis solids as reducing agents: Comparison with commercial reducing agents. Materials 2015, 9, 3. [Google Scholar] [CrossRef]
- Krivanek, A.F.; De Groote, H.; Gunaratna, N.S.; Diallo, A.; Friesen, D. Breeding and disseminating quality protein maize (QPM) for Africa. Afr. J. Biotechnol. 2007, 6, 312–324. [Google Scholar]
- Zheng, P.; Allen, W.B.; Roesler, K.; Williams, M.E.; Zhang, S.; Li, J.; Glassman, K.; Ranch, J.; Nubel, D.; Solawetz, W. A phenylalanine in dgat is a key determinant of oil content and composition in maize. Nat. Genet. 2008, 40, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Borrell, A.K.; Hammer, G.L.; Henzell, R.G. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 2000, 40, 1037–1048. [Google Scholar] [CrossRef]
- Thomas, H.; Smart, C.M. Crops that stay green1. Ann. Appl. Biol. 1993, 123, 193–219. [Google Scholar] [CrossRef]
- Thomas, H.; Howarth, C.J. Five ways to stay green. J. Exp. Bot. 2000, 51, 329–337. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, A.; Cantore, M.; Sposaro, M.; Trápani, N.; Pereira, M.L.; Hall, A. Canopy stay-green and yield in non-stressed sunflower. Field Crops Res. 2011, 121, 175–185. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Akinwale, R.; Franco, J.; Oyekunle, M. Assessment of reliability of secondary traits in selecting for improved grain yield in drought and low-nitrogen environments. Crop Sci. 2012, 52, 2050–2062. [Google Scholar] [CrossRef]
- Messmer, R.; Fracheboud, Y.; Bänziger, M.; Stamp, P.; Ribaut, J.-M. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Res. 2011, 124, 93–103. [Google Scholar] [CrossRef]
- Maltsoglou, I.; Koizumi, T.; Felix, E. The status of bioenergy development in developing countries. Glob. Food Secur. 2013, 2, 104–109. [Google Scholar] [CrossRef]
- IEA. Bioenergy Project Development. Biomass Supply. Good Practice Guidelines; International Energy Agency: Paris, France, 2007; p. 66. Available online: https://www.iea.org/publications/freepublications/publication/biomass.pdf (accessed on 9 March 2016).
- Parry, M.A.J.; Jing, H.-C. Bioenergy plants: Hopes, concerns and prospectives. J. Integr. Plant Biol. 2011, 53, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Serrano, C.; Monedero, E.; Portero, H.; Jiménez, E.; Ordás, B. Efficient biofuel production from traditional maize under low input. Agron. Sustain. Dev. 2014, 34, 561–567. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of european forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: https://www.weadapt.org/sites/weadapt.org/files/legacy-new/knowledge-base/files/1600/5554becc27072ar5-syr-final-all-topics.pdf (accessed on 14 March 2016).
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2014; pp. 1–32. Available online: http://ipcc-wg2.gov/AR5/images/uploads/WG2AR5_SPM_FINAL.pdf (accessed on 14 March 2016).
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2014; pp. 485–533. Available online: http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap7_FINAL.pdf (accessed on 15 April 2016).
- IEA. Key trends in CO2 emissions excerpt from: CO2 emissions from fuel combustion. 2015. Available online: https://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2015.pdf (accessed on 14 March 2016).
- Tubiello, F.; Salvatore, M.; Cóndor Golec, R.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, forestry and other land use emissions by sources and removals by sinks. Available online: http://www.fao.org/docrep/019/i3671e/i3671e.pdf (accessed on 31 March 2014).
- FAO. Food and Agriculture Organization of the United Nations. Statistics Division. FAOSTAT. Available online: http://faostat3.fao.org/download/G1/GB/E (accessed on 18 April 2016).
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Thomas, A.D.; Walsh, R.P.; Shakesby, R.A. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet mediterranean environment of northern Portugal. Catena 1999, 36, 283–302. [Google Scholar] [CrossRef]
- Martone, P.T.; Estevez, J.M.; Lu, F.; Ruel, K.; Denny, M.W.; Somerville, C.; Ralph, J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 2009, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- IEA. Biomass for Power Generation and Combined Heat & Power; International Energy Agency: Paris, France, 2007; p. 4. Available online: https://www.iea.org/publications/freepublications/publication/essentials3.pdf (accessed on 11 March 2016).
- Fischer, G.; Prieler, S.; Van Velthuizen, H.; Lensink, S.M.; Londo, M.; De Wit, M. Biofuel production potentials in europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef]
- Parry, M.A.; Hawkesford, M.J. Food security: Increasing yield and improving resource use efficiency. Proc. Nutr. Soc. 2010, 69, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, F.; Keer, L.M. Influence of surface modification on the microstructure and thermo-mechanical properties of bamboo fibers. Materials 2015, 8, 6597–6608. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Bio/Technol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Pandey, A.; Bhaskar, T.; Stöcker, M.; Sukumaran, R. Recent Advances in Thermochemical Conversion of Biomass; Elsevier: Amsterdam, The Netherlands, 2015; p. 504. [Google Scholar]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Liew, W.H.; Hassim, M.H.; Ng, D.K. Review of evolution, technology and sustainability assessments of biofuel production. J. Clean. Prod. 2014, 71, 11–29. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 2015, 46, 72–95. [Google Scholar] [CrossRef]
- Kaur, M.; Abrol, S. Biomass cogeneration plant. Indian J. Appl. Res. 2016, 6, 141–143. [Google Scholar]
- Ahrenfeldt, J.; Thomsen, T.P.; Henriksen, U.; Clausen, L.R. Biomass gasification cogeneration—A review of state of the art technology and near future perspectives. Appl. Therm. Eng. 2013, 50, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Giacchetta, G.; Leporini, M.; Marchetti, B. Technical and economic analysis of different cogeneration systems for energy production from biomass. Int. J. Prod. Qual. Manag. 2014, 13, 289–309. [Google Scholar] [CrossRef]
- Amirante, R.; Tamburrano, P. Novel, cost-effective configurations of combined power plants for small-scale cogeneration from biomass: Feasibility study and performance optimization. Energy Convers. Manag. 2015, 97, 111–120. [Google Scholar] [CrossRef]
- Amirante, R.; Clodoveo, M.L.; Distaso, E.; Ruggiero, F.; Tamburrano, P. A tri-generation plant fuelled with olive tree pruning residues in Apulia: An energetic and economic analysis. Renew. Energy 2016, 89, 411–421. [Google Scholar] [CrossRef]
- Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M. Orc power plant for electricity production from forest and agriculture biomass. Energy Convers. Manag. 2014, 87, 1180–1185. [Google Scholar] [CrossRef]
- Prando, D.; Renzi, M.; Gasparella, A.; Baratieri, M. Monitoring of the energy performance of a district heating chp plant based on biomass boiler and orc generator. Appl. Therm. Eng. 2015, 79, 98–107. [Google Scholar] [CrossRef]
- Chen, G.; Yao, J.; Yang, H.; Yan, B.; Chen, H. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production. Bioresour. Technol. 2015, 179, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Eden, M.R. Superstructure optimization of integrated fast pyrolysis-gasification for production of liquid fuels and propylene. AIChE J. 2016. [Google Scholar] [CrossRef]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Troyer, A.F.; Wellin, E.J. Heterosis decreasing in hybrids: Yield test inbreds. Crop Sci. 2009, 49, 1969–1976. [Google Scholar] [CrossRef]
- Lee, E.A.; Tracy, W.F. Modern maize breeding. In Handbook of Maize: Genetics and genomics; Bennetzen, J., Hake, S., Eds.; Springer Science + Business Media LLC: New York, NY, USA, 2009; pp. 141–160. [Google Scholar]
- Smidansky, E.D.; Meyer, F.D.; Blakeslee, B.; Weglarz, T.E.; Greene, T.W.; Giroux, M.J. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 2007, 225, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of lignification in plant defense. Plant Signal. Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Foston, M.B.; Hubbell, C.A.; Ragauskas, A.J. Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Materials 2011, 4, 1985–2002. [Google Scholar] [CrossRef]
- Bujanovic, B.; Ralph, S.; Reiner, R.; Hirth, K.; Atalla, R. Polyoxometalates in oxidative delignification of chemical pulps: Effect on lignin. Materials 2010, 3, 1888–1903. [Google Scholar] [CrossRef]
- Vogel, J. Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 2008, 11, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Pauly, M.; Keegstra, K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, M.J. Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 2011, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar]
- Romagosa, I.; Borràs-Gelonch, G.; Slafer, G.; van Eeuwijk, F. Genotype by environment environment/environmental interaction genotype/genotyping by environment interaction and adaptation environment/environmental adaptation. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer New York: New York, NY, USA, 2013; pp. 846–870. [Google Scholar]
- Ducrocq, S.; Madur, D.; Veyrieras, J.-B.; Camus-Kulandaivelu, L.; Kloiber-Maitz, M.; Presterl, T.; Ouzunova, M.; Manicacci, D.; Charcosset, A. Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics 2008, 178, 2433–2437. [Google Scholar] [CrossRef] [PubMed]
- Buckler, E.S.; Holland, J.B.; Bradbury, P.J.; Acharya, C.B.; Brown, P.J.; Browne, C.; Ersoz, E.; Flint-Garcia, S.; Garcia, A.; Glaubitz, J.C. The genetic architecture of maize flowering time. Science 2009, 325, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Carena, M.; Uphaus, J. Area under the dry down curve (AUDDC): A method to evaluate rate of dry down in maize. Crop Sci. 2010, 50, 2347–2354. [Google Scholar] [CrossRef]
- Gasura, E.; Setimela, P.; Edema, R.; Gibson, P.T.; Okori, P.; Tarekegne, A. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Sci. 2013, 53, 2295–2303. [Google Scholar] [CrossRef]
- Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 2013, 197, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Ougham, H. The stay-green trait. J. Exp. Bot. 2014, 65, 3889–3900. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Lee, H.; Park, S.; Chin, M.; Park, K. Stay-green characteristics and characters related to stay-green in maize inbred lines. RDA J. Agric. Sci. Upl. Ind. Crops 1994, 36, 127–134. [Google Scholar]
- Joshi, A.; Kumari, M.; Singh, V.; Reddy, C.; Kumar, S.; Rane, J.; Chand, R. Stay green trait: Variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 2007, 153, 59–71. [Google Scholar] [CrossRef]
- Burgess, M.G.; Rush, C.; Piccinni, G.; Schuster, G. Relationship between charcoal rot, the stay-green trait, and irrigation in grain sorghum. Phytopathology 2002, 92, S10. [Google Scholar]
- Jennings, P.R.; Berrio, L.; Torres, E.; Corredor, E. Una estrategia de mejoramiento para incrementar el potencial de rendimiento en arroz. Foro Arrocero Latinoam. 2002, 8, 10–13. [Google Scholar]
- Buckner, B.; Janick-Buckner, D.; Gray, J.; Johal, G.S. Cell-death mechanisms in maize. Trends Plant Sci. 1998, 3, 218–223. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hill, J. Effect on yield and dry-matter distribution of the stay-green characteristic in cultivars of forage maize grown in England. Grass Forage Sci. 2003, 58, 258–264. [Google Scholar] [CrossRef]
- Mushongi, A.; Derera, J.; Tongoona, P.; Lyimo, N. Generation mean analysis of leaf chlorophyll concentration from mid-silking to physiological maturity in some tropical maize (Zea mays L.) genotypes under low and high nitrogen dosages. Euphytica 2013, 189, 111–122. [Google Scholar] [CrossRef]
- Wang, A.-Y.; Li, Y.; Zhang, C.-Q. QTL mapping for stay-green in maize (Zea mays). Can. J. Plant Sci. 2012, 92, 249–256. [Google Scholar] [CrossRef]
- Ceppi, D.; Sala, M.; Gentinetta, E.; Verderio, A.; Motto, M. Genotype-dependent leaf senescence in maize inheritance and effects of pollination-prevention. Plant Physiol. 1987, 85, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Belícuas, P.R.; Aguiar, A.M.; Bento, D.A.V.; Câmara, T.M.M.; de Souza Junior, C.L. Inheritance of the stay-green trait in tropical maize. Euphytica 2014, 198, 163–173. [Google Scholar] [CrossRef]
- Escobar-Gutiérrez, A.J.; Combe, L. Senescence in field-grown maize: From flowering to harvest. Field Crops Res. 2012, 134, 47–58. [Google Scholar] [CrossRef]
- Subedi, K.; Ma, B. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Kamara, A.; Menkir, A.; Badu-Apraku, B.; Ibikunle, O. Reproductive and stay-green trait responses of maize hybrids, improved open-pollinated varieties and farmers’s local varieties to terminal drought stress. Maydica 2003, 48, 29–38. [Google Scholar]
- Antonietta, M.; Fanello, D.; Acciaresi, H.; Guiamet, J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res. 2014, 155, 111–119. [Google Scholar] [CrossRef]
- Sinclair, T.; Horie, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Schelbert, S.; Park, S.-Y.; Han, S.-H.; Lee, B.-D.; Andrès, C.B.; Kessler, F.; Hörtensteiner, S.; Paek, N.-C. Stay-green and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 2012, 24, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Buchanan-Wollaston, V.; Earl, S.; Harrison, E.; Mathas, E.; Navabpour, S.; Page, T.; Pink, D. The molecular analysis of leaf senescence—A genomics approach. Plant Biotechnol. J. 2003, 1, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Podzimska-Sroka, D.; O’Shea, C.; Gregersen, P.L.; Skriver, K. NAC transcription factors in senescence: From molecular structure to function in crops. Plants 2015, 4, 412–448. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Kuai, B.K.; Jia, J.Z.; Jing, H.C. Regulation of leaf senescence and crop genetic improvementf. J. Integr. Plant Biol. 2012, 54, 936–952. [Google Scholar] [CrossRef] [PubMed]
- Kusaba, M.; Tanaka, A.; Tanaka, R. Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence. Photosynth. Res. 2013, 117, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Hörtensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, 14, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, Y.; Hu, X.; Wang, X.; Tan, F.; Zhang, H.; Ren, Z.; Luo, P. Physiological characterization of ‘stay green’ wheat cultivars during the grain filling stage under field growing conditions. Acta Physiol. Plant. 2010, 32, 875–882. [Google Scholar] [CrossRef]
- Luo, P.; Ren, Z.; Wu, X.; Zhang, H.; Zhang, H.; Feng, J. Structural and biochemical mechanism responsible for the stay-green phenotype in common wheat. Chin. Sci. Bull. 2006, 51, 2595–2603. [Google Scholar] [CrossRef]
- Kumari, M.; Pudake, R.; Singh, V.; Joshi, A.K. Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica 2013, 190, 87–97. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Farooq, M.; Cheema, S.A.; Yasmeen, A.; Wahid, A. Stay green character at grain filling ensures resistance against terminal drought in wheat. Int. J. Agric. Biol. 2013, 15, 1272–1276. [Google Scholar]
- Derkx, A.P.; Orford, S.; Griffiths, S.; Foulkes, M.J.; Hawkesford, M.J. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioningf. J. Int. Plant Biol. 2012, 54, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Christopher, J.; Manschadi, A.; Hammer, G.; Borrell, A. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Crop Pasture Sci. 2008, 59, 354–364. [Google Scholar] [CrossRef]
- De Simone, V.; Soccio, M.; Borrelli, G.M.; Pastore, D.; Trono, D. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. J. Plant Res. 2014, 127, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.; Prasad, S.S.; Chatrath, R.; Mishra, S.; Watt, M.; Prashar, R.; Wason, A.; Gautam, A.; Malviya, P. Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian J. Plant Physiol. 2014, 19, 43–47. [Google Scholar] [CrossRef]
- Borrell, A.; Hammer, G.; Oosterom, E. Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? Ann. Appl. Biol. 2001, 138, 91–95. [Google Scholar] [CrossRef]
- Borrell, A.K.; Mullet, J.E.; George-Jaeggli, B.; van Oosterom, E.J.; Hammer, G.L.; Klein, P.E.; Jordan, D.R. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot. 2014. [Google Scholar] [CrossRef] [PubMed]
- Kassahun, B.; Bidinger, F.; Hash, C.; Kuruvinashetti, M. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica 2010, 172, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Cho, S.; Zhang, H.; Paik, H.; Lee, C.; Li, J.; Yoo, J.; Lee, B.; Koh, H.; Seo, H.S. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol. Cells 2007, 24, 83. [Google Scholar] [PubMed]
- Morita, R.; Sato, Y.; Masuda, Y.; Nishimura, M.; Kusaba, M. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 2009, 59, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.-H.; He, Y.-Q.; Xu, C.-G.; Li, X.-H.; Zhang, Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor. Appl. Genet. 2004, 108, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, M.; Liang, N.; Yan, H.; Wei, Y.; Xu, X.; Liu, J.; Xu, Z.; Chen, F.; Wu, G. Molecular cloning and function analysis of the stay green gene in rice. Plant J. 2007, 52, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Park, T.-I.; Oh, Y.-J.; Park, H.-H.; Park, J.-C.; Cho, S.-K.; Noh, J.-H.; Kim, D.-W.; Song, T.-H.; Chae, H.-S.; Jeung, J.-H. ‘Nokyang’, whole crop forage barley cultivar with the stay-green character, resistance to viral disease and high-yielding. J. Korean Soc. Grassl. Forage Sci. 2015, 35, 57–62. [Google Scholar] [CrossRef]
- Gous, P.W.; Hasjim, J.; Franckowiak, J.; Fox, G.P.; Gilbert, R.G. Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition. J. Cereal Sci. 2013, 58, 414–419. [Google Scholar] [CrossRef]
- Barry, C.S.; McQuinn, R.P.; Chung, M.-Y.; Besuden, A.; Giovannoni, J.J. Amino acid substitutions in homologs of the stay-green protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 2008, 147, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhang, J.; Li, J.; Yang, C.; Wang, T.; Ouyang, B.; Li, H.; Giovannoni, J.; Ye, Z. A stay-green protein SLSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SLPSY1 during ripening processes in tomato. New Phytol. 2013, 198, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Cukadar-Olmedo, B.; Miller, J.; Hammond, J. Combining ability of the stay green trait and seed moisture content in sunflower. Crop Sci. 1997, 37, 378–382. [Google Scholar] [CrossRef]
- Gómez-Lobato, M.E.; Mansilla, S.A.; Civello, P.M.; Martínez, G.A. Expression of stay-green encoding gene (BoSGR) during postharvest senescence of broccoli. Postharvest Biol. Technol. 2014, 95, 88–94. [Google Scholar] [CrossRef]
- Montefiori, M.; Pilkington, S.M.; Davies, K.M.; Allan, A.C. Genetics of pigment biosynthesis and degradation. In The Kiwifruit Genome; Testolin, R., Huang, H.-W., Ferguson, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 149–161. [Google Scholar]
- Armstead, I.; Donnison, I.; Aubry, S.; Harper, J.; Hörtensteiner, S.; James, C.; Mani, J.; Moffet, M.; Ougham, H.; Roberts, L. From crop to model to crop: Identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol. 2006, 172, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Clifton-Brown, J.; Lewandowski, I.; Bangerth, F.; Jones, M. Comparative responses to water stress in stay-green, rapid-and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol. 2002, 154, 335–345. [Google Scholar] [CrossRef]
- Lenis, J.; Calle, F.; Jaramillo, G.; Perez, J.; Ceballos, H.; Cock, J. Leaf retention and cassava productivity. Field Crops Res. 2006, 95, 126–134. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E.; Ehlers, J.D. Delayed-leaf-senescence and heat-tolerance traits mainly are independently expressed in cowpea. Crop Sci. 2000, 40, 1049–1055. [Google Scholar] [CrossRef]
- Agrawal, B.; House, L. Breeding for pest resistance in sorghum. In Sorghum in the Eighties: Proceedings of the International Symposium on Sorghum; International Crops Research Institute for the Semi-And Tropics (ICRISAT): Patancheru, India, 1982; pp. 435–446. [Google Scholar]
- Subudhi, P.; Rosenow, D.; Nguyen, H. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): Consistency across genetic backgrounds and environments. Theor. Appl. Genet. 2000, 101, 733–741. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Fritz, A.K.; Paulsen, G.M.; Bai, G.; Pandravada, S.; Gill, B.S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol. Breed. 2010, 26, 163–175. [Google Scholar] [CrossRef]
- Vandenbrink, J.P.; Goff, V.; Jin, H.; Kong, W.; Paterson, A.H.; Feltus, F.A. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum. Theor. Appl. Genet. 2013, 126, 2367–2380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Han, L.; Pislariu, C.; Nakashima, J.; Fu, C.; Jiang, Q.; Quan, L.; Blancaflor, E.B.; Tang, Y.; Bouton, J.H. From model to crop: Functional analysis of a stay-green gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 2011, 157, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; An, K.; Liao, Y.; Zhou, X.; Cao, Y.; Zhao, H.; Ge, X.; Kuai, B. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 2007, 144, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Schelbert, S.; Aubry, S.; Burla, B.; Agne, B.; Kessler, F.; Krupinska, K.; Hörtensteiner, S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 2009, 21, 767–785. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Guo, Y.; Kuai, B. Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Rep. 2011, 30, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Borovsky, Y.; Paran, I. Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theor. Appl. Genet. 2008, 117, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Yamatani, H.; Sato, Y.; Masuda, Y.; Kato, Y.; Morita, R.; Fukunaga, K.; Nagamura, Y.; Nishimura, M.; Sakamoto, W.; Tanaka, A. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll–protein complexes during leaf senescence. Plant J. 2013, 74, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Aubry, S.; Mani, J.; Hörtensteiner, S. Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol. Biol. 2008, 67, 243–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeze, E.; Harrison, E.; McHattie, S.; Hughes, L.; Hickman, R.; Hill, C.; Kiddle, S.; Kim, Y.-S.; Penfold, C.A.; Jenkins, D. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011, 23, 873–894. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.H.; Zhang, J.; Gao, J.F.; Lu, J.Y.; Wang, J.R. Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J. Agron. Crop Sci. 2005, 191, 292–299. [Google Scholar] [CrossRef]
- Landry, J.; Moureaux, T. Distribution and amino acid composition of protein groups located in different histological parts of maize grain. J. Agric. Food Chem. 1980, 28, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Ta, C.; Weiland, R. Nitrogen partitioning in maize during ear development. Crop Sci. 1992, 32, 443–451. [Google Scholar] [CrossRef]
- Rajcan, I.; Tollenaar, M. Source: Sink ratio and leaf senescence in maize:: II. Nitrogen metabolism during grain filling. Field Crops Res. 1999, 60, 255–265. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E. Strategies for enhancing grain yield in maize. Plant Breed. Rev. 2011, 34, 37. [Google Scholar]
- Egli, D. Is there a role for sink size in understanding maize population–yield relationships? Crop Sci. 2015, 55, 2453–2462. [Google Scholar] [CrossRef]
- Luche, H.d.S.; Silva, J.A.G.d.; Maia, L.C.d.; Oliveira, A.C.d. Stay-green: A potentiality in plant breeding. Ciênc. Rural 2015, 45, 1755–1760. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Scurlock, J.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Edwards, K.D.; Sanchez-Tamburrino, J.P.; Humphry, M. Advances in Plant Senescence. 2012. Available online: http://www.intechopen.com/books/senescence/advances-in-plant-senescence (accessed on 27 April 2016).
- Bogard, M.; Jourdan, M.; Allard, V.; Martre, P.; Perretant, M.R.; Ravel, C.; Heumez, E.; Orford, S.; Snape, J.; Griffiths, S. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J. Exp. Bot. 2011, 62, 3621–3636. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterom, E.; Borrell, A.; Chapman, S.; Broad, I.; Hammer, G. Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts. Field Crops Res. 2010, 115, 19–28. [Google Scholar] [CrossRef]
- Sala, R.G.; Andrade, F.H.; Camadro, E.L.; Cerono, J.C. Quantitative trait loci for grain moisture at harvest and field grain drying rate in maize (Zea mays, L.). Theor. Appl. Genet. 2006, 112, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, P.; St Martin, S.; Clucas, C. Indirect inbred selection to reduce grain moisture in maize hybrids. Crop Sci. 1994, 34, 391–396. [Google Scholar] [CrossRef]
- Hoskinson, R.L.; Karlen, D.L.; Birrell, S.J.; Radtke, C.W.; Wilhelm, W. Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 2007, 31, 126–136. [Google Scholar] [CrossRef]
- Shinners, K.J.; Binversie, B.N.; Savoie, P. Harvest and Storage of Wet and Dry Corn Stover as a Biomass Feedstock. In Proceedings of the 2003 ASAE Annual Meeting, Washington, DC, USA, 27–30 July 2003; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA; p. 23.
- Shinners, K.J.; Binversie, B.N. Fractional yield and moisture of corn stover biomass produced in the northern us corn belt. Biomass Bioenergy 2007, 31, 576–584. [Google Scholar] [CrossRef]
- Daynard, T.; Hunter, R. Relationships among whole-plant moisture, grain moisture, dry matter yield, and quality of whole-plant corn silage. Can. J. Plant Sci. 1975, 55, 77–84. [Google Scholar] [CrossRef]
- Balan, V. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, D.; Bustos-Lopez, M.; Gullino, M.; Piano, S.; Tabacco, E.; Borreani, G. Evolution of fungal populations in corn silage conserved under polyethylene or biodegradable films. J. Appl. Microbiol. 2015, 119, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Pordesimo, L.; Sokhansanj, S.; Edens, W. Moisture and yield of corn stover fractions before and after grain maturity. Trans. ASAE 2004, 47, 1597. [Google Scholar] [CrossRef]
- Grieder, C.; Dhillon, B.S.; Schipprack, W.; Melchinger, A.E. Breeding maize as biogas substrate in central europe: I. Quantitative-genetic parameters for testcross performance. Theor. Appl. Genet. 2012, 124, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.; Rath, J. Biogas production from maize: Current state, challenges, and prospects. 1. Methane yield potential. BioEnergy Res. 2012, 5, 1027–1042. [Google Scholar] [CrossRef]
- White, W.G.; Moose, S.P.; Weil, C.F.; McCann, M.C.; Carpita, N.C.; Below, F.E. Tropical maize: Exploiting maize genetic diversity to develop a novel annual crop for lignocellulosic biomass and sugar production. In Routes to Cellulosic Ethanol; Buckeridge, S.M., Goldman, H.G., Eds.; Springer New York: New York, NY, USA, 2011; pp. 167–179. [Google Scholar]
- Kumar, H.; Baredar, P.; Agrawal, P.; Soni, S. Effect of moisture content on gasification efficiency in down draft gasifier. System 2014, 5, 6. [Google Scholar]
- Leask, W.; Daynard, T. Dry matter yield, in vitro digestibility, percent protein, and moisture of corn stover following grain maturity. Can. J. Plant Sci. 1973, 53, 515–522. [Google Scholar] [CrossRef]
- Barros-Rios, J.; Romani, A.; Peleteiro, S.; Garrote, G.; Ordas, B. Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass Bioenergy 2016, 90, 42–49. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.; Lightle, D.T.; Karlen, D.L.; Novak, J.M.; Barbour, N.W.; Laird, D.A.; Baker, J.; Ochsner, T.E.; Halvorson, A.D. Vertical distribution of corn stover dry mass grown at several us locations. BioEnergy Res. 2011, 4, 11–21. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A.; Antonakou, E.; Papazisi, K.; Lappas, A.; Athanassiou, C. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew. Sustain. Energy Rev. 2009, 13, 750–762. [Google Scholar] [CrossRef]
- Cone, J.W.; Engels, F.M. The influence of ageing on cell wall composition and degradability of three maize genotypes. Anim. Feed Sci. Technol 1993, 40, 331–342. [Google Scholar] [CrossRef]
- De Leon, N.; Kaeppler, S.M.; Lauer, J.G. Breeding maize for lignocellulosic biofuel production. Bioenergy Feedstocks: Breed. Genet. 2013, 151–171. [Google Scholar] [CrossRef]
- Lorenz, A.; Coors, J.; De Leon, N.; Wolfrum, E.; Hames, B.; Sluiter, A.; Weimer, P. Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci. 2009, 49, 85–98. [Google Scholar] [CrossRef]
- Paul Scott, M.; Byrnes, K.; Blanco, M. Dry matter and relative sugar yield from enzymatic hydrolysis of maize whole plants and cobs. Plant Breed. 2012, 131, 286–292. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
CROP | CO2eq Emission (Gg) 1 | N2O Emission (Gg) | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Wheat | 42,510 | 9565 | 52,075 | 137 | 31 | 168 |
Rice paddy | 42,114 | 9476 | 51,590 | 136 | 31 | 166 |
Maize | 35,455 | 7977 | 43,432 | 114 | 26 | 140 |
Potatoes | 3795 | 854 | 4649 | 12 | 3 | 15 |
Dry beans | 1652 | 372 | 2023 | 5 | 1 | 7 |
Species | Traits Associated with SG | Reference |
---|---|---|
Maize | High grain yield, drought tolerance and low Nitrogen | [8] |
Cell-death mechanisms | [68] | |
Drought tolerance, greater leaf greenness | [9] | |
High yield and increase dry matter | [69] | |
High leaf chlorophyll concentration, low Nitrogen | [70] | |
Longer green leaf area after flowering | [71] | |
Delayed leaf Senescence, higher dry matter and high sucrose accumulation | [72] | |
Days to silking emergence | [73] | |
Greater leaf chlorophyll content | [74] | |
Greater leaf chlorophyll content, high dry matter accumulation, low N uptake | [75] | |
Drought tolerance, delayed flowering, grater leaf area index | [76] | |
Lower canopy senescence, longer post-silking, high C and N accumulation and yield | [77] | |
Maize, Rice, Soybean | High leaf N content, high CO2 assimilation rate, high photosynthesis rate, and greater biomass accumulation | [78] |
Arabidopsis | Reduced chlorophyll degradation | [79] |
Delayed leaf senescence | [80] | |
Arabidopsis, Maize, Wheat, etc. | Delayed leaf senescence, reduced chlorophyll degradation, high yield and quality | [81] |
Delayed leaf senescence, longer photosynthesis duration, increase biomass production | [82] | |
Delayed leaf senescence, reduced chlorophyll breakdown. | [83] | |
Reduced chlorophyll and protein degradation | [84] | |
Wheat | High yield, high biomass production | [46] |
High photosynthetic rate, high stomatal conductance, high photochemical quenching of PSII, greater grain filling. | [85] | |
High photosynthetic rate, high chlorophyll content, high malondialdehyde content, high activity of both superoxide dismutase and catalase, greater grain filling and delayed flag leaf senescence, high seed weights and per-plant yield | [86] | |
Spot blotch resistance, green coloration (chlorophyll) of flag leaf, greater leaf area under greenness | [65] | |
Greater leaf area under greenness, heat tolerance, high grain and biomass yield. | [87] | |
Drought and heat tolerance, high vegetation index, greater grain filling | [88] | |
Drought tolerance, higher grain filling rate, longer grain filling, high grain yield, high harvest index, greater grain weight and grain number per spike. | [89] | |
High yield and biomass production, increase thousand grain weight | [90] | |
Higher green leaf area, high grain filling, high yield | [91] | |
High photosynthetic rate, high chlorophyll content, better cellular redox state of the flag leaf | [92] | |
High grain yield, greater thousand grain weight, higher root length, higher root density and root weight, and slow flag leaf drying | [93] | |
Low N, high yield, higher grain filling, high biomass production | [94] | |
Drought tolerance, reduction in canopy size, higher root growth, grain filling and grain yield | [95] | |
Greater leaf chlorophyll content, higher grain filling and grain yield. | [96] | |
Rice | Greater chlorophyll and N content, high yield, Rhyncosporium, Sarocladium, and Helminthosporium resistance | [67] |
Greater seed-setting rate, increases grain yield, grain filling and chlorophyll content | [97] | |
High chlorophyll content, less chlorophyll degradation | [98] | |
Retention of the green area of the flag and second leaves, high yield. | [99] | |
Less chlorophyll breakdown and degradation of pigment-protein complex. | [100] | |
Barley | Strong winter hardiness, resistance to shattering and barley yellow mosaic virus, latter growing period, high forage dry matter yields, high grain yield | [101] |
Starch biosynthesis and quality in grain, drought tolerance, high grain filling and yield | [102] | |
Tomato and Pepper | Inhibition chlorophyll and protein degradation during fruit ripening | [103] |
Tomato | Inhibition chlorophyll degradation | [104] |
Sunflower | Greener stems at physiological maturity, low harvest seed moisture content, drought tolerance. | [105] |
High oil content, increase biomass, higher grain number and yield, resistance to stalk breakage | [7] | |
Broccoli | Delayed senescence, reduced chlorophyll degradation | [106] |
Kiwi | Higher Pigment biosynthesis and reduced pigment degradation | [107] |
Lolium/Festuca grasses | Slow chlorophyll catabolism | [108] |
Miscanthus | Drought tolerance, delayed leaf senescence, increase biomass | [109] |
Cassava | Drought tolerance, increase the total fresh biomass, higher root dry matter | [110] |
Cowpea | Increase seed size and grain yield, heat tolerance | [111] |
Plant Parts | Percentage of Dry Matter in Plant Maize | |
---|---|---|
Grain Physiological Maturity | After Grain Physiological Maturity | |
Grain | 45.9 | 56.8 |
Stover | 54.1 | 43.2 |
Stalk | 27.5 | 22.0 |
Leaf | 11.4 | 9.1 |
Cob | 8.2 | 6.6 |
Husk | 7.0 | 5.6 |
Grain moisture (%) | 30.6 | 13.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caicedo, M.; Barros, J.; Ordás, B. Redefining Agricultural Residues as Bioenergy Feedstocks. Materials 2016, 9, 635. https://doi.org/10.3390/ma9080635
Caicedo M, Barros J, Ordás B. Redefining Agricultural Residues as Bioenergy Feedstocks. Materials. 2016; 9(8):635. https://doi.org/10.3390/ma9080635
Chicago/Turabian StyleCaicedo, Marlon, Jaime Barros, and Bernardo Ordás. 2016. "Redefining Agricultural Residues as Bioenergy Feedstocks" Materials 9, no. 8: 635. https://doi.org/10.3390/ma9080635
APA StyleCaicedo, M., Barros, J., & Ordás, B. (2016). Redefining Agricultural Residues as Bioenergy Feedstocks. Materials, 9(8), 635. https://doi.org/10.3390/ma9080635