Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems
Abstract
:1. Introduction
2. Literature Review
- The published literature, thus far, has primarily addressed permutation-type flow shop scheduling problems, but fewer attempts were found in the study of the “no-wait” type variant of flow shop scheduling problems (NWFSSP).
- Earlier researchers used PSO, variants of PSO, DPSO, and the hybridization of PSO with MA for solving NWFSSP with TFT as an optimality criterion; however, the development of an efficient algorithm using the hybridization of PSO with SA and TFT as an optimality criterion for NWFSSP has not been reported, neither for small-sized jobs (n = 20, 50, and 100) nor for large-sized jobs (n = 200 and 500).
- Investigations done by most of the researchers for solving NWFSSP have been limited to 100/200 jobs [3,9,15,16,17]. Recently, Pan-Ruiz et al. [10] tried to solve large-sized problems up to 500 jobs for the Permutation Flow Shop Scheduling Problem (FSSP) and Akhshabi et al. [31] considered NWFSSP for solving large-sized problems up to 500 jobs. Hence, the scope for further research can be clearly sensed to develop improved metaheuristics.
3. No-Wait Flow Shop Scheduling Problem (NWFSSP)
4. Proposed Hybrid PSO (PHPSO) for NWFSSP
4.1. Particle Swarm Optimization (PSO)
4.2. Solution Representation
4.3. Population Initialization
4.4. Simulated Annealing(SA)
4.5. Proposed Hybrid PSO (PHPSO) Algorithm
Algorithm 1: PHPSO for NWFSSP |
Step 1: Input the total no. of jobs (n), total no. of machines (m) and processing time matrix (p). |
Calculate delay matrix (δ) as per Equation (7). |
Step 2: |
for i = 0 to n − 1 do
|
end for |
Step 3: |
Sort the particles with increasing order of TFT score. |
Step 4: Generate initial seed sequence with NEH algorithm by following:
|
else fseq = σi+1 |
Step 5: minArr = fseq |
Step 6: Calculate pbest (mpbest) of particle and gbest (pgbest) of swarm for generating the initial seed sequence. |
Step 7: Select particle from the current population for local refinement; |
repeat |
|
end for |
until maximum iteration count is reached. |
Step 8: Select best_particle from the population for global refinement; |
Step 9: Initialize initial_temperature, T as 3.0 and final_temperature, F as 0.9, and cooling rate α as 0.99. |
Step 10: Initialize Best_So_Far to current state. |
Step 11: while T < final_temperature do |
|
end for |
end while |
Step 12: set gbest to Best_So_Far. |
End Procedure |
5. Numerical Tests and Comparisons
5.1. Experimental Setup
5.2. Computational and Statistical Evaluation
5.3. Comparison of Proposed Hybrid PSO(PHPSO) with Fink and Vob, DPSOVND, Pan-Ruiz, and HPSO
6. Conclusions and Future Research
Author Contributions
Conflicts of Interest
References
- Pinedo, M. Scheduling: Theory, Algorithms and Systems, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Wang, L.; Zheng, D.Z. An effective hybrid heuristic for flow shop scheduling. Int. J. Adv. Manuf. Technol. 2003, 21, 38–44. [Google Scholar]
- Fink, A.; Vob, S. Solving the continuous flow-shop scheduling problem by metaheuristics. Eur. J. Oper. Res. 2003, 151, 400–414. [Google Scholar] [CrossRef]
- Rajendran, C. A no-wait flowshop scheduling heuristic to minimize makespan. J. Oper. Res. Soc. 1994, 45, 472–478. [Google Scholar] [CrossRef]
- Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125, 535–550. [Google Scholar] [CrossRef]
- Raaymakers, W.; Hoogeveen, J. Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing. Eur. J. Oper. Res. 2000, 12, 6131–6151. [Google Scholar] [CrossRef]
- Tseng, L.; Lin, Y. A genetic local search algorithm for minimizing total flow time in the permutation flowshop scheduling problem. Int. J. Prod. Econom. 2010, 127, 121–128. [Google Scholar] [CrossRef]
- Allahverdi, A. A survey of scheduling problems with no-wait in process. Eur. J. Oper. Res. 2016, 255, 665–686. [Google Scholar] [CrossRef]
- Pan, Q.; Tasgetiren, F.; Liang, Y. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 2008, 35, 2807–2839. [Google Scholar] [CrossRef]
- Pan, Q.; Ruiz, R. Local search methods for the flowshop scheduling problem with flowtime minimization. Eur. J. Oper. Res. 2012, 222, 31–43. [Google Scholar] [CrossRef]
- Rock, H. The three-machine no-wait flow shop is NP-complete. J. ACM 1984, 31, 336–345. [Google Scholar] [CrossRef]
- Garey, M.; Johnson, D. Computers and Intractability, a Guide to the Theory of NP-Completeness, 4th ed.; Freeman: New York, NY, USA, 1979. [Google Scholar]
- Graham, R. Optimization and approximation in deterministic sequencing and scheduling. Ann. Discret. Math. 1979, 5, 287–326. [Google Scholar]
- Rajendran, C. A heuristic for scheduling in flowshop and flowline-based manufacturing cell with multicriteria. Int. J. Prod. Res. 1994, 32, 2541–2558. [Google Scholar] [CrossRef]
- Bertolissi, E. Heuristic algorithm for scheduling in the no-wait flow-shop. J. Mater. Process. Technol. 2000, 107, 459–465. [Google Scholar] [CrossRef]
- Aldowaisan, T.; Allahverdi, A. New heuristics for m -machine no-wait flowshop to minimize total completion time. Int. J. Manag. Sci. 2004, 32, 345–352. [Google Scholar] [CrossRef]
- Sapkal, S.; Laha, D. A heuristic for no-wait flow shop scheduling. Int. J. Adv. Manuf. Technol. 2013, 68, 1327–1338. [Google Scholar] [CrossRef]
- Tasgetiren, M.; Pan, Q.; Kizilay, D.; Gao, K. A variable block insertion heuristic for the blocking flowshop scheduling problem with total flowtime criterion. Algorithms 2016, 9, 71. [Google Scholar] [CrossRef]
- Liu, J.; Reeves, C. Constructive and composite heuristic solutions to the P//∑Ci scheduling problem. Eur. J. Oper. Res. 2001, 132, 439–452. [Google Scholar] [CrossRef]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. Appl. Soft Comput. J. 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput. J. 2011, 11, 4135–4151. [Google Scholar] [CrossRef]
- Gao, K.; Pan, Q.; Li, J.; Wang, Y.; Liang, J. A hybrid harmony search algorithm for the no-wait flow-shop scheduling problems. Asia-Pac. J. Oper. Res. 2012, 29, 12500–12512. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E., Jr.; Ham, I. A Heuristic Algorithm for the m-Machine, n-Job Flow-shop Sequencing Problem. Int. J. Manag. Sci. 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Gao, K.; Suganthan, P.; Chua, T. An enhanced migrating birds optimization algorithm for no-wait flow shop scheduling problem. In Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling, Singapore, 16–19 April 2013; pp. 9–13. [Google Scholar]
- Filho, G.; Nagano, M.; Lorena, L. Hybrid Evolutionary Algorithm for Flowtime Minimization in No-Wait Flowshop Scheduling; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; Volume 4827, pp. 1099–1109. [Google Scholar]
- Zhang, Y.; Li, X.; Wang, Q. Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization. Eur. J. Oper. Res. 2009, 196, 869–876. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Z.; Gu, X. An asynchronous genetic local search algorithm for the permutation flowshop scheduling problem with total flowtime minimization. Expert Syst. Appl. 2011, 38, 7970–7979. [Google Scholar] [CrossRef]
- Wang, F.; Rao, Y.; Tang, Q. A hybrid intelligence algorithm for no-wait flow shop scheduling. Adv. Mater. Res. 2013, 712, 2447–2451. [Google Scholar] [CrossRef]
- Bewoor, L.; Chandra Prakash, V.; Sapkal, S. Comparative analysis of metaheuristic approaches for m-machine no-wait flow shop scheduling for minimizing total flow time with stochastic input. Int. J. Eng. Technol. 2016, 8, 3021–3026. [Google Scholar] [CrossRef]
- Bewoor, L.; Chandra Prakash, V.; Sapkal, S. Comparative analysis of metaheuristic approaches for makespan minimization for no-wait flow shop scheduling problem. Int. J. Electr. Comput. Eng. 2017, 7, 31–37. [Google Scholar] [CrossRef]
- Akhshabi, M.; Tavakkoli-Moghaddam, R.; Rahnamay-Roodposhti, F. A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time. Int. J. Adv. Manuf. Technol. 2014, 70, 1181–1188. [Google Scholar] [CrossRef]
- Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [Google Scholar] [CrossRef]
- Vannucci, P. ALE-PSO: An adaptive swarm algorithm to solve design problems of laminates. Algorithms 2009, 2, 710–734. [Google Scholar] [CrossRef]
- Eberhard, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Bean, J. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6, 154–160. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.; Jin, Y.-H. An effective PSO-based memetic algorithm for flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part B 2007, 37, 18–27. [Google Scholar] [CrossRef]
- Jarboui, B.; Ibrahim, S.; Siarry, P.; Rebai, A. A combinatorial particle swarm optimization for solving permutation flowshop problems. Comput. Ind. Eng. 2008, 54, 526–538. [Google Scholar] [CrossRef]
- Khamlichi, Y.; Tahiri, A.; Abtoy, A.; Bulo, I.; Lozano, F. A hybrid algorithm for optimal wireless sensor network deployment with the minimum number of sensor nodes. Algorithms 2017, 10, 80. [Google Scholar] [CrossRef]
- Devore, J. Probability and Statistics for Engineering and the Sciences, 9th ed.; Brooks Cole: Pacific Grove, CA, USA, 2016. [Google Scholar]
Dimension | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
xij | 5.45 | 4.22 | 4.37 | 5.47 | 4.37 |
Job Permutation | 4 | 1 | 2 | 5 | 3 |
Dimension | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
xij | 4.37 | 4.22 | 5.45 | 5.47 | 4.37 |
Job Permutation | 2 | 1 | 4 | 5 | 3 |
Instances | F&V | DPSO | PAN-RUIZ | HPSO | PHPSO | Instances | F&V | DPSO | PAN-RUIZ | HPSO | PHPSO |
---|---|---|---|---|---|---|---|---|---|---|---|
ta001 | 0.6602 | 0.6602 | 0.4864 | 0.4864 | 0 | ta062 | 0.3453 | 0.3243 | 0.0779 | 0.0779 | 0 |
ta002 | 0.8378 | 0.8378 | 0.6142 | 0.6142 | 0 | ta063 | 0.341 | 0.3253 | 0.0802 | 0.0802 | 0 |
ta003 | 0.3002 | 0.3002 | 0.0931 | 0.0931 | 0 | ta064 | 0.3614 | 0.353 | 0.112 | 0.112 | 0 |
ta004 | 0.5711 | 0.5711 | 0.3505 | 0.3505 | 0 | ta065 | 0.2568 | 0.2431 | 0.0316 | 0.0316 | 0 |
ta005 | 0.6642 | 0.6642 | 0.4699 | 0.4699 | 0 | ta066 | 0.2517 | 0.2355 | 0 | 0 | 0.6682 |
ta006 | 0.8226 | 0.8226 | 0.543 | 0.543 | 0 | ta067 | 0.41 | 0.399 | 0.1294 | 0.1294 | 0 |
ta007 | 0.7412 | 0.7412 | 0.5032 | 0.5032 | 0 | ta068 | 0.2638 | 0.246 | 0 | 0 | 0.578 |
ta008 | 0.2086 | 0.2086 | 0.0566 | 0.0566 | 0 | ta069 | 0.2751 | 0.2606 | 0.0276 | 0.0276 | 0 |
ta009 | 0.6369 | 0.6369 | 0.4281 | 0.4284 | 0 | ta070 | 0.2429 | 0.2272 | 0 | 0 | 0.5659 |
ta010 | 0.2729 | 0.2729 | 0.0747 | 0.0747 | 0 | ta071 | 0.5933 | 0.5818 | 0.152 | 0.1519 | 0 |
ta011 | 0.449 | 0.449 | 0.2021 | 0.2021 | 0 | ta072 | 0.6913 | 0.6736 | 0.1762 | 0.1762 | 0 |
ta012 | 1.4844 | 1.4844 | 1.1164 | 1.1164 | 0 | ta073 | 0.6287 | 0.6143 | 0.1562 | 0.1562 | 0 |
ta013 | 1.4634 | 1.4634 | 1.1326 | 1.1326 | 0 | ta074 | 0.6034 | 0.586 | 0.143 | 0.143 | 0 |
ta014 | 0.4945 | 0.4945 | 0.2571 | 0.2571 | 0 | ta075 | 0.7386 | 0.725 | 0.2368 | 0.2368 | 0 |
ta015 | 1.2817 | 1.2817 | 0.8373 | 0.8373 | 0 | ta076 | 0.5632 | 0.5474 | 0.0772 | 0.0772 | 0 |
ta016 | 1.7866 | 1.7866 | 1.4364 | 1.4364 | 0 | ta077 | 0.4528 | 0.4413 | 0.03 | 0.03 | 0 |
ta017 | 1.8615 | 1.8615 | 1.3951 | 1.3951 | 0 | ta078 | 0.7447 | 0.7325 | 0.2625 | 0.2625 | 0 |
ta018 | 0.9409 | 0.9409 | 0.6262 | 0.6262 | 0 | ta079 | 0.6651 | 0.6526 | 0.2063 | 0.2063 | 0 |
ta019 | 0.6716 | 0.6716 | 0.446 | 0.446 | 0 | ta080 | 0.6151 | 0.5987 | 0.1464 | 0.1464 | 0 |
ta020 | 1.1856 | 1.1856 | 0.8944 | 0.8944 | 0 | ta081 | 1.2881 | 1.272 | 0.4875 | 0.4875 | 0 |
ta021 | 3.459 | 3.459 | 2.8844 | 2.8844 | 0 | ta082 | 1.1395 | 1.1295 | 0.413 | 0.413 | 0 |
ta022 | 3.0842 | 3.0842 | 2.4337 | 2.4337 | 0 | ta083 | 1.2602 | 1.2526 | 0.487 | 0.487 | 0 |
ta023 | 2.7716 | 2.7716 | 2.3392 | 2.3392 | 0 | ta084 | 1.3522 | 1.3387 | 0.5561 | 0.5561 | 0 |
ta024 | 2.4208 | 2.4208 | 1.7912 | 1.7912 | 0 | ta085 | 1.0442 | 1.0261 | 0.3556 | 0.3556 | 0 |
ta025 | 1.2228 | 1.2228 | 0.9689 | 0.9689 | 0 | ta086 | 1.1755 | 1.1604 | 0.4352 | 0.4352 | 0 |
ta026 | 2.9389 | 2.9389 | 2.3263 | 2.3263 | 0 | ta087 | 1.2491 | 1.2396 | 0.4628 | 0.4628 | 0 |
ta027 | 1.5579 | 1.5579 | 1.1232 | 1.1232 | 0 | ta088 | 0.5035 | 0.4935 | 0 | 0 | 0 |
ta028 | 3.1438 | 3.1438 | 2.63 | 2.63 | 0 | Ta089 | 1.0852 | 1.0701 | 0.3824 | 0.3824 | 0 |
ta029 | 3.0663 | 3.0663 | 2.4829 | 2.4829 | 0 | ta090 | 0.3783 | 0.5 | 0 | 0 | 0.4575 |
ta030 | 2.6776 | 2.6776 | 2.128 | 2.128 | 0 | ta091 | 0.6029 | 0.5761 | 0.1025 | 0.1025 | 0 |
ta031 | 0.5309 | 0.5242 | 0.305 | 0.305 | 0 | ta092 | 0.4659 | 0.428 | 0 | 0 | 0.7522 |
ta032 | 0.3904 | 0.3816 | 0.1345 | 0.1345 | 0 | ta093 | 0.4476 | 0.4266 | 0 | 0 | 0.7405 |
ta033 | 0.3633 | 0.3602 | 0.1 | 0.1 | 0 | ta094 | 0.4936 | 0.4664 | 0.0334 | 0.0334 | 0 |
ta034 | 0.3682 | 0.3638 | 0.1283 | 0.1283 | 0 | ta095 | 0.4635 | 0.4351 | 0 | 0 | 0.7278 |
ta035 | 0.432 | 0.425 | 0.1837 | 0.1837 | 0 | ta096 | 0.499 | 0.4649 | 0 | 0 | 0.7416 |
ta036 | 0.4044 | 0.4014 | 0.16 | 0.16 | 0 | ta097 | 0.4638 | 0.4366 | 0 | 0 | 0.5638 |
ta037 | 0.3379 | 0.3347 | 0.125 | 0.125 | 0 | ta098 | 0.5586 | 0.523 | 0.0621 | 0.0621 | 0 |
ta038 | 0.3947 | 0.391 | 0.1357 | 0.1357 | 0 | ta099 | 0.5659 | 0.5388 | 0.066 | 0.066 | 0 |
ta039 | 0.3935 | 0.3932 | 0.1572 | 0.1572 | 0 | ta100 | 0.5911 | 0.558 | 0.0779 | 0.0779 | 0 |
ta040 | 0.4571 | 0.4501 | 0.1953 | 0.1953 | 0 | ta101 | 0.9873 | 0.9636 | 0.2122 | 0.2122 | 0 |
ta041 | 0.3132 | 0.3092 | 0 | 0 | 0.1271 | ta102 | 0.3667 | 0.6266 | 0 | 0 | 0.7785 |
ta042 | 1.1402 | 1.1346 | 0.5724 | 0.5724 | 0 | ta103 | 0.6347 | 0.6084 | 0.0124 | 0 | 0 |
ta043 | 0.636 | 0.6346 | 0.2403 | 0.2403 | 0 | ta104 | 1.0478 | 1.0169 | 0.2425 | 0.2425 | 0 |
ta044 | 0.9319 | 0.929 | 0.4709 | 0.4709 | 0 | ta105 | 0.6518 | 0.6373 | 0 | 0 | 0.7306 |
ta045 | 1.1979 | 1.1951 | 0.6446 | 0.6446 | 0 | ta106 | 1.0966 | 1.0666 | 0.2576 | 0.2576 | 0 |
ta046 | 0.8167 | 0.8137 | 0.3965 | 0.3965 | 0 | ta107 | 0.645 | 0.6233 | 0 | 0 | 0 |
ta047 | 0.3134 | 0.3142 | 0 | 0 | 0.1592 | ta108 | 0.9611 | 0.9464 | 0.1955 | 0.1852 | 0 |
ta048 | 0.9951 | 0.9953 | 0.5039 | 0.5039 | 0 | ta109 | 1.0853 | 1.0552 | 0.2642 | 0.2642 | 0 |
ta049 | 0.9334 | 0.9314 | 0.4952 | 0.4952 | 0 | ta110 | 0.6368 | 0.6159 | 0 | 0 | 0 |
ta050 | 0.8461 | 0.8455 | 0.4318 | 0.4318 | 0 | ta111 | - | - | 0.07 | 0.07 | 0 |
ta051 | 1.7498 | 1.752 | 1.0019 | 1.0019 | 0 | ta112 | - | - | 0.05 | 0.05 | 0 |
ta052 | 0.3752 | 0.3731 | 0.018 | 0.018 | 0 | ta113 | - | - | 0.05 | 0.05 | 0 |
ta053 | 1.592 | 1.5903 | 0.8841 | 0.8841 | 0 | ta114 | - | - | 0.05 | 0.05 | 0 |
ta054 | 1.6893 | 1.6915 | 1.0019 | 1.0019 | 0 | ta115 | - | - | 0.07 | 0.07 | 0 |
ta056 | 1.2087 | 1.2087 | 0.6463 | 0.6463 | 0 | ta116 | - | - | 0.06 | 0.06 | 0 |
ta057 | 0.3609 | 0.3596 | 0 | 0 | 0.0642 | ta117 | - | - | 0.02 | 0.02 | 0 |
ta058 | 1.8276 | 1.823 | 1.0604 | 1.0604 | 0 | ta118 | - | - | 0.11 | 0.1 | 0 |
ta059 | 0.4815 | 0.4807 | 0.0923 | 0.0923 | 0 | ta119 | - | - | 0 | 0 | 0.99 |
ta060 | 0.3934 | 0.3934 | 0.0257 | 0.0257 | 0 | ta120 | - | - | 0 | 0 | 1.09 |
ta061 | 0.3236 | 0.3051 | 0.0882 | 0.0882 | 0 | Avg. | 0.9011 | 0.8955 | 0.4244 | 0.4241 | 0.0999 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 110 | 282,949 | 380,236 | 36,254 |
HPSO-2014 | 110 | 319,512 | 405,337 | 38,647 |
Difference | 110 | −36,563.3 | 60,259.7 | 5745.5 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 110 | 282,949 | 380,236 | 36,254 |
Pan+Ruiz-2012 | 110 | 319,750 | 405,889 | 38,700 |
Difference | 110 | −36,801.5 | 60,548.4 | 5773.1 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 110 | 282,949 | 380,236 | 36,254 |
DPSO-2008 | 110 | 472,275 | 637,377 | 60,771 |
Difference | 110 | −189,326 | 272,438 | 25,976 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 110 | 282,949 | 380,236 | 36,254 |
F&V-2003 | 110 | 478,400 | 647,517 | 61,738 |
Difference | 110 | −195,451 | 267,281 | 25,484 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 120 | 795,657 | 1,746,744 | 159,455 |
HPSO-2014 | 120 | 853,494 | 1,820,273 | 166,167 |
Difference | 120 | −57,837.6 | 106,077.3 | 9683.5 |
Algorithm | N | Mean | StDev | SE Mean |
---|---|---|---|---|
PHPSO | 120 | 795,657 | 1,746,744 | 159,455 |
Pan+Ruiz-2012 | 120 | 854,696 | 1,823,535 | 166,465 |
Difference | 120 | −59,039.3 | 109,396.3 | 9986.5 |
Instance | F&V | DPSO | Pan+Ruiz | HPSO | PHPSO | Instance | F&V | DPSO | Pan+Ruiz | HPSO | PHPSO |
---|---|---|---|---|---|---|---|---|---|---|---|
ta001 | 15,674 | 15,674 | 14,033 | 14,033 | 10,841 | ta061 | 308,052 | 303,750 | 253,266 | 253,266 | 232,745 |
ta002 | 17,250 | 17,250 | 15,151 | 15,151 | 11,386 | ta062 | 302,386 | 297,672 | 242,281 | 242,281 | 224,780 |
ta003 | 15,821 | 15,821 | 13,301 | 13,301 | 12,168 | ta063 | 295,239 | 291,782 | 237,832 | 237,832 | 220,164 |
ta004 | 17,970 | 17,970 | 15,447 | 15,447 | 11,438 | ta064 | 278,811 | 277,093 | 227,738 | 227,738 | 204,798 |
ta005 | 15,317 | 15,317 | 13,529 | 13,529 | 10,204 | ta065 | 292,757 | 289,554 | 240,301 | 240,301 | 232,933 |
ta006 | 15,501 | 15,501 | 13,123 | 13,123 | 11,505 | ta066 | 290,819 | 287,055 | 232,342 | 232,342 | 232,342 |
ta007 | 15,693 | 15,693 | 13,548 | 13,548 | 13,548 | ta067 | 300,068 | 297,731 | 240,366 | 240,366 | 212,821 |
ta008 | 15,955 | 15,955 | 13,948 | 13,948 | 11,394 | ta068 | 291,859 | 287,754 | 230,945 | 230,945 | 230,945 |
ta009 | 16,385 | 16,385 | 14,295 | 14,298 | 12,010 | ta069 | 307,650 | 304,131 | 247,921 | 247,921 | 241,266 |
ta010 | 15,329 | 15,329 | 12,943 | 12,943 | 12,943 | ta070 | 301,942 | 298,119 | 242,933 | 242,933 | 242,933 |
ta011 | 25,205 | 25,205 | 20,911 | 20,911 | 17,395 | ta071 | 412,700 | 409,715 | 298,385 | 298,358 | 259,015 |
ta012 | 26,342 | 26,342 | 22,440 | 22,440 | 20,603 | ta072 | 394,562 | 390,417 | 274,384 | 274,384 | 233,285 |
ta013 | 22,910 | 22,910 | 19,833 | 19,833 | 15,300 | ta073 | 405,878 | 402,274 | 288,114 | 288,114 | 249,201 |
ta014 | 22,243 | 22,243 | 18,710 | 18,710 | 14,883 | ta074 | 422,301 | 417,733 | 301,044 | 301,044 | 263,386 |
ta015 | 23,150 | 23,150 | 18,641 | 18,641 | 16,146 | ta075 | 400,175 | 397,049 | 284,681 | 284,681 | 230,167 |
ta016 | 22,011 | 22,011 | 19,245 | 19,245 | 17,899 | ta076 | 391,359 | 387,398 | 269,686 | 269,686 | 250,354 |
ta017 | 21,939 | 21,939 | 18,363 | 18,363 | 17,667 | ta077 | 394,179 | 391,057 | 279,463 | 279,463 | 271,318 |
ta018 | 24,158 | 24,158 | 20,241 | 20,241 | 19,447 | ta078 | 402,025 | 399,214 | 290,908 | 290,908 | 230,425 |
ta019 | 23,501 | 23,501 | 20,330 | 20,330 | 20,059 | ta079 | 416,833 | 413,701 | 301,970 | 301,970 | 250,337 |
ta020 | 24,597 | 24,597 | 21,320 | 21,320 | 21,254 | ta080 | 410,372 | 406,206 | 291,283 | 291,283 | 254,082 |
ta021 | 38,597 | 38,597 | 33,623 | 33,623 | 29,656 | ta081 | 562,150 | 558,199 | 365,463 | 365,463 | 245,683 |
ta022 | 37,571 | 37,571 | 31,587 | 31,587 | 29,199 | ta082 | 563,923 | 561,305 | 372,449 | 372,449 | 263,582 |
ta023 | 38,312 | 38,312 | 33,920 | 33,920 | 30,158 | ta083 | 562,404 | 560,530 | 370,027 | 370,027 | 248,834 |
ta024 | 38,802 | 38,802 | 31,661 | 31,661 | 31,343 | ta084 | 562,918 | 559,690 | 372,393 | 372,393 | 239,313 |
ta025 | 39,012 | 39,012 | 34,557 | 34,557 | 29,551 | ta085 | 556,311 | 551,388 | 368,915 | 368,915 | 272,137 |
ta026 | 38,562 | 38,562 | 32,564 | 32,564 | 29,790 | ta086 | 562,253 | 558,356 | 370,908 | 370,908 | 258,445 |
ta027 | 39,663 | 39,663 | 32,922 | 32,922 | 25,506 | ta087 | 574,102 | 571,680 | 373,408 | 373,408 | 255,264 |
ta028 | 37,000 | 37,000 | 32,412 | 32,412 | 28,929 | ta088 | 578,119 | 574,269 | 384,525 | 384,525 | 384,525 |
ta029 | 39,228 | 39,228 | 33,600 | 33,600 | 29,647 | ta089 | 564,803 | 560,710 | 374,423 | 374,423 | 270,858 |
ta030 | 37,931 | 37,931 | 32,262 | 32,262 | 29,314 | ta090 | 522,798 | 568,927 | 379,296 | 379,296 | 379,296 |
ta031 | 76,016 | 75,682 | 64,802 | 64,802 | 49,655 | ta091 | 1,521,201 | 1,495,730 | 1,046,314 | 1,046,314 | 949,025 |
ta032 | 83,403 | 82,874 | 68,051 | 68,051 | 59,984 | ta092 | 1,516,009 | 1,476,863 | 1,034,195 | 1,034,195 | 1,034,195 |
ta033 | 78,282 | 78,103 | 63,162 | 63,162 | 57,420 | ta093 | 1,515,535 | 1,493,502 | 1,046,902 | 1,046,902 | 1,046,902 |
ta034 | 82,737 | 82,467 | 68,226 | 68,226 | 60,470 | ta094 | 1,489,457 | 1,462,300 | 1,030,481 | 1,030,481 | 997,214 |
ta035 | 83,901 | 83,493 | 69,351 | 69,351 | 58,590 | ta095 | 1,513,281 | 1,483,894 | 1,034,027 | 1,034,027 | 1,034,027 |
ta036 | 80,924 | 80,749 | 66,841 | 66,841 | 57,620 | ta096 | 1,508,331 | 1,474,000 | 1,006,195 | 1,006,195 | 1,006,195 |
ta037 | 78,791 | 78,604 | 66,253 | 66,253 | 58,893 | ta097 | 1,541,419 | 1,512,861 | 1,053,051 | 1,053,051 | 1,053,051 |
ta038 | 79,007 | 78,796 | 64,332 | 64,332 | 56,646 | ta098 | 1,533,397 | 1,498,330 | 1,044,875 | 1,044,875 | 983,816 |
ta039 | 75,842 | 75,825 | 62,981 | 62,981 | 54,424 | ta099 | 1,507,422 | 1,481,283 | 1,026,137 | 1,026,137 | 962,641 |
ta040 | 83,829 | 83,430 | 68,770 | 68,770 | 57,533 | ta100 | 1,520,800 | 1,489,218 | 1,030,299 | 1,030,299 | 955,843 |
ta041 | 114,398 | 114,051 | 87,114 | 87,114 | 87,114 | ta101 | 2,012,785 | 1,988,772 | 1,227,733 | 1,227,733 | 949,025 |
ta042 | 112,725 | 112,427 | 82,820 | 82,820 | 82,820 | ta102 | 2,057,409 | 2,025,561 | 1,245,271 | 1,245,271 | 1,245,271 |
ta043 | 105,433 | 105,345 | 79,931 | 79,931 | 64,446 | ta103 | 2,050,169 | 2,017,216 | 1,269,673 | 1,254,162 | 1,254,162 |
ta044 | 113,540 | 113,367 | 86,446 | 86,446 | 68,770 | ta104 | 2,040,946 | 2,010,121 | 1,238,349 | 1,238,349 | 1,238,349 |
ta045 | 115,441 | 115,295 | 86,377 | 86,377 | 62,523 | ta105 | 2,027,138 | 2,009,299 | 1,227,214 | 1,227,214 | 1,227,214 |
ta046 | 112,645 | 112,459 | 86,587 | 86,587 | 62,005 | ta106 | 2,046,542 | 2,017,240 | 1,227,604 | 1,227,604 | 976,118 |
ta047 | 116,560 | 116,631 | 88,750 | 88,750 | 88,750 | ta107 | 2,045,906 | 2,018,945 | 1,243,707 | 1,243,707 | 1,243,707 |
ta048 | 115,056 | 115,065 | 86,727 | 86,727 | 67,669 | ta108 | 2,044,218 | 2,028,861 | 1,246,123 | 1,235,460 | 983,816 |
ta049 | 110,482 | 110,367 | 85,441 | 85,441 | 67,144 | ta109 | 2,037,040 | 2,007,678 | 1,234,936 | 1,234,936 | 962,641 |
ta050 | 113,462 | 113,427 | 87,998 | 87,998 | 61,460 | ta110 | 2,046,966 | 2,020,806 | 1,250,596 | 1,250,596 | 955,843 |
ta051 | 172,845 | 172,981 | 125,831 | 125,831 | 62,857 | ta111 | -- | -- | 6,698,656 | 6,698,656 | 6,263,859 |
ta052 | 161,092 | 160,836 | 119,247 | 119,247 | 117,137 | ta112 | -- | -- | 6,770,735 | 6,723,548 | 6,413,646 |
ta053 | 160,213 | 160,104 | 116,459 | 116,459 | 101,810 | ta113 | -- | -- | 6,739,645 | 6,739,645 | 6,437,528 |
ta054 | 161,557 | 161,690 | 120,261 | 120,261 | 100,074 | ta114 | -- | -- | 6,785,991 | 6,743,598 | 6,432,538 |
ta055 | 167,640 | 167,336 | 118,184 | 118,184 | 114,468 | ta115 | -- | -- | 6,729,468 | 6,729,468 | 6,312,830 |
ta056 | 161,784 | 161,784 | 120,586 | 120,586 | 103,248 | ta116 | -- | -- | 6,724,085 | 6,724,085 | 6,361,035 |
ta057 | 167,233 | 167,064 | 122,880 | 122,880 | 122,880 | ta117 | -- | -- | 6,691,468 | 6,691,468 | 6,539,854 |
ta058 | 168,100 | 167,822 | 122,489 | 122,489 | 119,449 | ta118 | -- | -- | 6,783,916 | 6,755,489 | 6,126,127 |
ta059 | 165,292 | 165,207 | 121,872 | 121,872 | 111,571 | ta119 | -- | -- | 6,711,305 | 6,711,305 | 6,711,305 |
ta060 | 168,386 | 168,386 | 123,954 | 123,954 | 120,849 | ta120 | -- | -- | 6,755,722 | 6,755,722 | 6,755,722 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bewoor, L.A.; Chandra Prakash, V.; Sapkal, S.U. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems. Algorithms 2017, 10, 121. https://doi.org/10.3390/a10040121
Bewoor LA, Chandra Prakash V, Sapkal SU. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems. Algorithms. 2017; 10(4):121. https://doi.org/10.3390/a10040121
Chicago/Turabian StyleBewoor, Laxmi A., V. Chandra Prakash, and Sagar U. Sapkal. 2017. "Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems" Algorithms 10, no. 4: 121. https://doi.org/10.3390/a10040121
APA StyleBewoor, L. A., Chandra Prakash, V., & Sapkal, S. U. (2017). Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems. Algorithms, 10(4), 121. https://doi.org/10.3390/a10040121