Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems
Abstract
:1. Introduction
2. Problem Statement and Preliminary
3. New Integral Inequalities
4. Stability Analysis Criteria for Interval Time-Delay Systems
5. Numerical Examples
6. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guo, G.; Ding, L.; Han, Q.L. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica 2014, 50, 1489–1496. [Google Scholar] [CrossRef]
- Ding, L.; Han, Q.L.; Guo, G. Network-based leader-following consensus for distributed multi-agent systems. Automatica 2013, 49, 2281–2286. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, H.H.; Gao, H.J.; Shi, P. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 2012, 20, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.J.; Sun, W.C.; Shi, P. Robust sampled-data control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 2010, 18, 238–245. [Google Scholar] [CrossRef]
- Shao, H.Y.; Han, Q.L. New stability criteria for linear discrete-time systems with interval-like time-varying delays. IEEE Trans. Autom. Control 2011, 56, 619–625. [Google Scholar] [CrossRef]
- Zhang, L.X.; Xiang, W.M. Mode-identifying time estimation and switching-delay tolerant control for switched systems: An elementary time unit approach. Automatica 2016, 64, 174–181. [Google Scholar] [CrossRef]
- Zhou, B.; Egorov, A.V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems. Automatica 2016, 71, 281–291. [Google Scholar] [CrossRef]
- Tian, Z.D.; Li, S.J.; Wang, Y.H.; Yu, H.X. Networked control system time-delay compensation based on time-delay prediction and improved implicit GPC. Algorithms 2015, 8, 3–18. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, T. A CS recovery algorithm for model and time delay identification of MISO-FIR systems. Algorithms 2015, 8, 743–753. [Google Scholar] [CrossRef]
- Li, Z.C.; Bai, Y.; Huang, C.Z.; Yan, H.C. Further results on stabilization for interval time-delay systems via new integral inequality approach. ISA Trans. 2017, 68, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Li, T.; Cong, S.; Fei, S.M. Stability analysis for interval time-varying delay systems based on time-varying bound integral method. J. Franklin Inst. 2014, 351, 4892–4903. [Google Scholar] [CrossRef]
- Ge, C.; Hua, C.C.; Guan, X.P. New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1378–1383. [Google Scholar]
- An, J.Y.; Li, Z.Y.; Wang, X.M. A novel approach to delay-fractional-dependent stability criterion for linear systems with interval delay. ISA Trans. 2014, 53, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470. [Google Scholar] [CrossRef]
- Feng, Z.G.; Lam, J.; Yang, G.H. Optimal partitioning method for stability analysis of continuous/discrete delay systems. Int. J. Robust Nonlinear Control 2015, 25, 559–574. [Google Scholar] [CrossRef]
- Kim, J.H. Note on stability of linear systems with time-varying delay. Automatica 2011, 47, 2118–2121. [Google Scholar] [CrossRef]
- Hien, L.V.; Trinh, H. An enhanced stability criterion for time-delay systems via a new bounding technique. J. Franklin Inst. 2015, 352, 4407–4422. [Google Scholar] [CrossRef]
- Briat, C. Convergence and equivalence results for the Jensen’s inequality-application to time-delay and sample-data systems. IEEE Trans. Autom. Control 2011, 57, 1660–1665. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef]
- Zeng, H.B.; He, Y.; Wu, M.; She, J.H. New results on stability analysis for systems with discrete distributed delay. Automatica 2015, 60, 189–192. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Zeng, H.B. Stability analysis of systems with time-varying delay via relaxed integral inequalities. Syst. Control Lett. 2016, 92, 52–61. [Google Scholar] [CrossRef]
- Park, M.J.; Kwon, O.M.; Park, J.H.; Lee, S.M.; Cha, E.J. Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 2015, 55, 204–208. [Google Scholar] [CrossRef]
- Hien, L.V.; Trinh, H. Refined Jensen-based inequality approach to stability analysis of time-delay systems. IET Control Theory Appl. 2015, 9, 2188–2194. [Google Scholar] [CrossRef]
- Mohajerpoor, R.; Shanmugam, L.; Abdi, H.; Rakkiyappan, R.; Nahavandi, S.; Park, J.H. Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances. J. Franklin Inst. 2017, 354, 1169–1194. [Google Scholar] [CrossRef]
- Mohajerpoor, R.; Shanmugam, L.; Abdi, H.; Rakkiyappan, R.; Nahavandi, S.; Shi, P. New delay range-dependent stability criteria for interval time-varying delay systems via Wirtinger-based inequalities. Int. J. Robust Nonlinear Control 2017. [Google Scholar] [CrossRef]
- Park, P.G.; Lee, W.I.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Franklin Inst. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
- Park, P.G.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Sun, J.; Chen, J. Stability analysis of static recurrent neural networks with interval time-varying delay. Appl. Math. Comput. 2013, 221, 111–120. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M. Stability analysis for delayed neural networks considering both conservativeness and complexity. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.Y. New delay-dependent stability criteria for systems with interval delay. Automatica 2009, 45, 744–749. [Google Scholar] [CrossRef]
- Jiang, X.F.; Han, Q.L. New stability criteria for linear systems with interval time-varying delay. Automatica 2008, 44, 2680–2685. [Google Scholar] [CrossRef]
- Fridman, E.; Shaked, U.; Liu, K. New conditions for delay-derivative dependent stability. Automatica 2009, 45, 2723–2727. [Google Scholar] [CrossRef]
- Liu, P.L. Further results on delay-range-dependent stability with additive time-varying delay systems. ISA Trans. 2014, 53, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Wang, Y.L.; Yang, G.H. New stability criteria for continuous-time systems with interval time-varying delay. IET Control Theory Appl. 2010, 4, 1101–1107. [Google Scholar] [CrossRef]
- Tang, M.; Wang, Y.W.; Wen, C.Y. Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays. IET Control Theory Appl. 2012, 6, 868–873. [Google Scholar] [CrossRef]
- Zeng, H.B.; He, Y.; Wu, M.; She, J.H. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control 2015, 60, 2768–2772. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.G.; Lin, C.; Wu, M. Delay-range-dependent stability for systems with time-varying delay. Automatica 2007, 43, 371–376. [Google Scholar] [CrossRef]
Methods | Number of Variables | ||||
---|---|---|---|---|---|
Shao [30] | 2.5048 | 3.2591 | 4.0744 | - | |
Sun et al. [14] | 2.5663 | 3.3408 | 4.1690 | 5.0275 | |
Jiang and Han [31] | 2.5213 | 3.3311 | 4.1880 | 5.0722 | |
Fridman et al. [32] | 2.7241 | 3.4580 | 4.2576 | 5.0977 | |
Mohajerpoor et al. [25] | 2.9525 | 3.5837 | 4.3490 | 5.1623 | |
Liu [33] | 3.0103 | 3.4865 | 4.1641 | 5.1012 | |
Hien and Trinh [17] | 3.1634 | 3.6648 | 4.4467 | 5.2147 | |
Theorem 1 | 3.9038 | 4.2741 | 4.8907 | 5.6759 |
Methods | Number of Variables | |||||
---|---|---|---|---|---|---|
Shao [30] | 1.87 | 2.50 | 3.25 | 4.07 | - | |
Zhu et al. [34] | 2.02 | 2.59 | 3.30 | 4.08 | - | |
Tang et al. [35] | 2.04 | 2.60 | 3.30 | 4.08 | - | |
Park et al. [27] | 2.06 | 2.61 | 3.31 | 4.09 | - | |
Qian et al. [11] | 2.09 | 2.67 | 3.38 | 4.16 | - | |
Fridman et al. [32] | 2.12 | 2.72 | 3.45 | 4.25 | 5.09 | |
Hien and Trinh [23] | 2.31 | 2.80 | 3.50 | 4.30 | 5.14 | |
Corollary 1 | 2.96 | 3.75 | 4.19 | 4.73 | 5.51 |
Methods | Number of Variables | |
---|---|---|
Kim [16] | 4.975 | |
Zeng et al. [36] | 6.059 | |
Seuret and Gouaisbaut [19] | 6.059 | |
Zhang et al. [21] | 6.165 | |
Zeng et al. [20] | 6.166 | |
Corollary 1 | 6.170 |
Methods | Number of Variables | ||||
---|---|---|---|---|---|
Shao [30] | 2.2160 | 1.1270 | 0.8710 | 0.8710 | |
Sun et al. [14] | 2.2160 | 1.1272 | 0.8714 | 0.8714 | |
Zhu et al. [34] | 2.2850 | 1.2080 | 1.0200 | 1.0200 | |
Tang et al. [35] | 2.3070 | 1.2330 | 1.0440 | 1.0440 | |
An et al. [13] | 3.6962 | 1.7655 | 1.3123 | 1.3123 | |
Corollary 2 | 3.9872 | 2.0362 | 1.5110 | 1.4849 |
Methods | ||||
---|---|---|---|---|
He et al. [37] | 2.190 | 2.200 | 2.200 | 2.210 |
Sun et al. [14] | 2.263 | 2.285 | 2.307 | 2.316 |
Feng et al. [15] | 2.432 | 2.433 | 2.430 | 2.423 |
Seuret and Gouaisbaut [19] | 2.570 | 2.572 | 2.576 | 2.579 |
Hien and Trinh [17] | 2.704 | 2.754 | 2.795 | 2.806 |
Theorem 1 | 2.901 | 2.973 | 3.185 | 3.247 |
Methods | Number of Variables | ||||
---|---|---|---|---|---|
Park et al. [26] | 0.11 | 0.22 | 0.50 | 0.58 | |
Corollary 1 | 0.19 | 0.28 | 0.51 | 0.61 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Qi, X. Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems. Algorithms 2017, 10, 134. https://doi.org/10.3390/a10040134
Zhang S, Qi X. Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems. Algorithms. 2017; 10(4):134. https://doi.org/10.3390/a10040134
Chicago/Turabian StyleZhang, Shuai, and Xiao Qi. 2017. "Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems" Algorithms 10, no. 4: 134. https://doi.org/10.3390/a10040134
APA StyleZhang, S., & Qi, X. (2017). Improved Integral Inequalities for Stability Analysis of Interval Time-Delay Systems. Algorithms, 10(4), 134. https://doi.org/10.3390/a10040134