A New Coding Paradigm for the Primitive Relay Channel †
Abstract
:1. Introduction
2. Existing Upper and Lower Bounds
2.1. Cut-Set Upper Bound
2.2. Improvements on a Cut-Set Upper Bound
- Symmetric ( and are conditionally identically distributed given ): .
- Degraded ( is a stochastically degraded version of ): .
- Reversely degraded ( is a stochastically degraded version of ): .
2.3. Direct Transmission Lower Bound
- the primitive relay channel is reversely degraded, which implies that ;
- .
2.4. Decode-and-Forward Lower Bound
- the primitive relay channel is degraded, which implies that ;
- .
2.5. Partial Decode-and-Forward Lower Bound
2.6. Compress-and-Forward Lower Bound
2.7. Partial Decode-Compress-and-Forward Lower Bound
3. Main Result
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van der Meulen, E.C. Three-terminal communication channels. Adv. Appl. Probab. 1971, 3, 120–154. [Google Scholar] [CrossRef]
- Cover, T.; Gamal, A.E. Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 1979, 25, 572–584. [Google Scholar] [CrossRef]
- Schein, B.; Gallager, R. The Gaussian parallel relay network. In Proceedings of the 2000 IEEE International Symposium on Information Theory, Sorrento, Italy, 25–30 June 2000; p. 22. [Google Scholar]
- Avestimehr, A.S.; Diggavi, S.N.; Tse, D.N.C. Wireless Network Information Flow: A Deterministic Approach. IEEE Trans. Inform. Theory 2011, 57, 1872–1905. [Google Scholar] [CrossRef] [Green Version]
- Nazer, B.; Gastpar, M. Compute-and-forward: Harnessing interference through structured codes. IEEE Trans. Inform. Theory 2011, 57, 6463–6486. [Google Scholar] [CrossRef]
- Lim, S.H.; Kim, Y.H.; Gamal, A.E.; Chung, S.Y. Noisy network coding. IEEE Trans. Inform. Theory 2011, 57, 3132–3152. [Google Scholar] [CrossRef]
- Minero, P.; Lim, S.H.; Kim, Y.H. A unified approach to hybrid coding. IEEE Trans. Inform. Theory 2015, 61, 1509–1523. [Google Scholar] [CrossRef]
- Zahedi, S. On Reliable Communication over Relay Channels. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2005. [Google Scholar]
- Gamal, A.E.; Aref, M. The capacity of the semideterministic relay channel. IEEE Trans. Inform. Theory 1982, 28, 536. [Google Scholar] [CrossRef]
- Kim, Y.H. Capacity of a class of deterministic relay channels. IEEE Trans. Inform. Theory 2008, 54, 1328–1329. [Google Scholar] [CrossRef]
- Zhang, Z. Partial converse for a relay channel. IEEE Trans. Inform. Theory 1988, 34, 1106–1110. [Google Scholar] [CrossRef]
- Aleksic, M.; Razaghi, P.; Yu, W. Capacity of a class of modulo-sum relay channels. IEEE Trans. Inform. Theory 2009, 55, 921–930. [Google Scholar] [CrossRef]
- Xue, F. A new upper bound on the capacity of a primitive relay channel based on channel simulation. IEEE Trans. Inform. Theory 2014, 60, 4786–4798. [Google Scholar] [CrossRef]
- Wu, X.; Özgür, A.; Xie, L.L. Improving on the Cut-Set Bound via Geometric Analysis of Typical Sets. IEEE Trans. Inform. Theory 2017, 63, 2254–2277. [Google Scholar] [CrossRef]
- Wu, X.; Özgür, A. Improving on the cut-set bound for general primitive relay channels. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1675–1679. [Google Scholar]
- Wu, X.; Özgür, A. Cut-set bound is loose for Gaussian relay networks. In Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 29 September 2015; pp. 1135–1142. [Google Scholar]
- Gamal, A.E.; Kim, Y.H. Network Information Theory; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Kramer, G. Topics in Multi-User Information Theory. Found. Trends Commun. Inf. Theory 2007, 4, 265–444. [Google Scholar] [CrossRef]
- Arıkan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inform. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Andersson, M.; Rathi, V.; Thobaben, R.; Kliewer, J.; Skoglund, M. Nested polar codes for wiretap and relay channels. IEEE Commun. Lett. 2010, 14, 752–754. [Google Scholar] [CrossRef]
- Karzand, M. Polar codes for degraded relay channels. In Proceedings of the International Zurich Seminar on Communication, Zurich, Switzerland, 29 February–2 March 2012; pp. 59–62. [Google Scholar]
- Blasco-Serrano, R.; Thobaben, R.; Andersson, M.; Rathi, V.; Skoglund, M. Polar Codes for Cooperative Relaying. IEEE Trans. Commun. 2012, 60, 3263–3273. [Google Scholar] [CrossRef]
- Karas, D.; Pappi, K.; Karagiannidis, G. Smart decode-and-forward relaying with polar codes. IEEE Wirel. Comm. Lett. 2014, 3, 62–65. [Google Scholar] [CrossRef]
- Wang, L. Polar coding for relay channels. In Proceedings of the International Symposium on Information Theory, Hong Kong, China, 14–19 June 2015; pp. 1532–1536. [Google Scholar]
- Bennatan, A.; Shamai, S.; Calderbank, A.R. Soft-Decoding-Based Strategies for Relay and Interference Channels: Analysis and Achievable Rates Using LDPC Codes. IEEE Trans. Inform. Theory 2014, 60, 1977–2009. [Google Scholar] [CrossRef]
- Kim, Y.H. Coding techniques for primitive relay channels. In Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello, NY, USA, 26–28 September 2007; pp. 26–28. [Google Scholar]
- Hassani, S.H.; Urbanke, R. Universal Polar Codes. arXiv 2013, arXiv:1307.7223. [Google Scholar]
- Şaşoğlu, E.; Vardy, A. A new polar coding scheme for strong security on wiretap channels. In Proceedings of the IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1117–1121. [Google Scholar]
- Mondelli, M.; Hassani, S.H.; Sason, I.; Urbanke, R. Achieving Marton’s Region for Broadcast Channels Using Polar Codes. IEEE Trans. Inform. Theory 2015, 61, 783–800. [Google Scholar] [CrossRef]
- Chou, R.A.; Bloch, M.R. Polar Coding for the Broadcast Channel With Confidential Messages: A Random Binning Analogy. IEEE Trans. Inform. Theory 2016, 62, 2410–2429. [Google Scholar] [CrossRef] [Green Version]
- Mondelli, M.; Hassani, S.H.; Sason, I.; Urbanke, R. How to achieve the capacity of asymmetric channels. IEEE Trans. Inform. Theory 2018, 64, 3371–3393. [Google Scholar] [CrossRef]
- Gad, E.E.; Li, Y.; Kliewer, J.; Langberg, M.; Jiang, A.; Bruck, J. Asymmetric Error Correction and Flash-Memory Rewriting using Polar Codes. IEEE Trans. Inform. Theory 2016, 62, 4024–4038. [Google Scholar] [CrossRef]
- Wei, Y.P.; Ulukus, S. Polar Coding for the General Wiretap Channel With Extensions to Multiuser Scenarios. IEEE J. Sel. Areas Commun. 2016, 34, 278–291. [Google Scholar]
- Mondelli, M.; Hassani, S.H.; Urbanke, R. A New Coding Paradigm for the Primitive Relay Channel. In Proceedings of the IEEE International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 351–355. [Google Scholar] [CrossRef]
- Aguerri, I.E.; Gündüz, D. Capacity of a class of state-dependent orthogonal relay channels. IEEE Trans. Inf. Theory 2016, 62, 1280–1295. [Google Scholar] [CrossRef]
- Hong, S.N.; Hui, D.; Marić, I. Capacity-Achieving Rate-Compatible Polar Codes. IEEE Trans. Inform. Theory 2017, 63, 7620–7632. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondelli, M.; Hassani, S.H.; Urbanke, R. A New Coding Paradigm for the Primitive Relay Channel. Algorithms 2019, 12, 218. https://doi.org/10.3390/a12100218
Mondelli M, Hassani SH, Urbanke R. A New Coding Paradigm for the Primitive Relay Channel. Algorithms. 2019; 12(10):218. https://doi.org/10.3390/a12100218
Chicago/Turabian StyleMondelli, Marco, S. Hamed Hassani, and Rüdiger Urbanke. 2019. "A New Coding Paradigm for the Primitive Relay Channel" Algorithms 12, no. 10: 218. https://doi.org/10.3390/a12100218