A Visual Object Tracking Algorithm Based on Improved TLD
Abstract
:1. Introduction
2. TLD Tracking Framework
2.1. TLD Working Principle
2.2. Disadvantages of TLD
3. The Improved TLD Tracking Algorithm
3.1. HOG Descriptors
3.2. Implementing the Tracking Module with KCF
3.3. Optimize the Detecting Strategy of the Detection Module
4. Experiments and Analysis
4.1. Tracking Accuracy and Robustness
4.1.1. Comparison with the Original TLD
4.1.2. Experiments on OTB50
4.2. Tracking Speed
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TLD | Tracking–learning–detection |
KCF | Kernelized correlation filters |
HOG | Histogram of oriented gradient |
SITF | Scale-invariant feature transform |
SURF | Speeded up robust features |
CSK | Circulant structure kernel |
DSST | Discriminative scale space tracker |
FBE | Forward and backward error |
NCC | Normalized correlation coefficient |
OTB | Object tracking benchmark |
OR | Overlap rate |
AOR | Average overlap rate |
CLE | Center location error |
FPS | Frames per second |
SemiT | Semi-supervised tracker |
SCM | Tracking via sparsity-based collaborative model |
DFT | Distribution fields for tracking |
References
- Cao, S.; Wang, X. Real-time dynamic gesture recognition and hand servo tracking using PTZ camera. Multimed. Tools Appl. 2019, 10, 78. [Google Scholar] [CrossRef]
- Yu, H.; Li, G.; Zhang, W.; Huang, Q.; Du, D.; Tian, Q.; Sebe, N. The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and Baseline. Int. J. Comput. Vis. 2019. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Chen, Z.; Du, Y.; Zhu, D.; Liu, P. A Robust Visual Tracking Algorithm Based on Spatial-Temporal Context Hierarchical Response Fusion. Algorithms 2019, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles, CA, USA, 15–21 June 2019; pp. 1328–1338. [Google Scholar]
- Yang, S.; Xie, Y.; Li, P.; Wen, H.; Luo, H.; He, Z. Visual Object Tracking Robust to Illumination Variation Based on Hyperline Clustering. Information 2019, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Shi, X. Deep Directional Network for Object Tracking. Algorithms 2018, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Medouakh, S.; Boumehraz, M.; Terki, N. Improved object tracking via joint color-LPQ texture histogram based mean shift algorithm. Signal Image Video Process. 2018, 12, 3. [Google Scholar] [CrossRef]
- Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H.S. Staple: Complementary Learners for Real-Time Tracking. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1401–1409. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar]
- Yu, L.; Ong, S.K.; Nee, A.Y. A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping. Multimed. Tools Appl. 2016, 75, 6. [Google Scholar] [CrossRef]
- Visakha, K.; Prakash, S.S. Detection and Tracking of Human Beings in a Video Using Haar Classifier. In Proceedings of the International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 1–4. [Google Scholar]
- Nishimura, H.; Nagai, Y.; Tasaka, K.; Yanagihara, H. Object Tracking by Branched Correlation Filters and Particle Filter. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 79–84. [Google Scholar]
- Dai, K.; Wang, Y.; Yan, X. Long-term object tracking based on siamese network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3640–3644. [Google Scholar]
- Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H. End-to-end representation learning for correlation filter based tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2805–2813. [Google Scholar]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Jung, H.J.; Yoo, J. A real-time face tracking algorithm using improved camshift with depth information. J. Electr. Eng. Technol. 2017, 2, 5. [Google Scholar]
- Prasad, M.; Zheng, D.R.; Mery, D.; Puthal, D.; Sundaram, S.; Lin, C.T. A fast and self-adaptive on-line learning detection system. Procedia Comput. Sci. 2018, 144, 13–22. [Google Scholar] [CrossRef]
- Ye, Z.D. Improvement and Implementation of Self-learning Visual Tracking Algorithm for Android. Master’s Thesis, Southeast University, Nanjing, China, 2017. [Google Scholar]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-backward error: Automatic detection of tracking failures. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2756–2759. [Google Scholar]
- Taetz, B.; Bleser, G.; Golyanik, V.; Stricke, D. Occlusion-aware video registration for highly non-rigid objects. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.F.; He, Y.H.; Zhang, W.; Cui, Z.G. Research on KCF target loss early warning method based on outlier detection. CEA 2018, 54, 216–222. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Online Object Tracking: A Benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Fang, Y.; Yuan, Y.; Li, L.; Wu, J.; Lin, W.; Li, Z. Performance evaluation of visual tracking algorithms on video sequences with quality degradation. IEEE Access 2017, 5, 2430–2441. [Google Scholar] [CrossRef]
Name | Frames | TLD AOR | Our AOR | Growth Rate of AOR |
---|---|---|---|---|
Dudek | 1145 | 0.622 | 0.789 | 26.8% |
CarScale | 252 | 0.443 | 0.634 | 42.9% |
Redteam | 1918 | 0.582 | 0.759 | 30.4% |
Girl | 500 | 0.540 | 0.711 | 31.6% |
Name | Frames | Moving Camera | Occlusion | Motion Blur | Illum. Change | Scale Change | Similar Object |
---|---|---|---|---|---|---|---|
CarScale | 252 | √ | √ | √ | × | √ | × |
Deer | 71 | √ | √ | √ | × | × | √ |
Car1 | 1020 | √ | × | × | √ | √ | √ |
Trellis | 569 | √ | × | × | √ | × | × |
CarDark | 389 | √ | × | √ | √ | √ | √ |
Name | Frames | Frame Size | TLD Tracked Frames | Our Tracked Frames | FPS of TLD (frames/s) | FPS of Ours (frames/s) | Multiples of FPS |
---|---|---|---|---|---|---|---|
Dudek | 1145 | 720 × 480 | 1142 | 1145 | 7.14 | 16.67 | 2.35 |
CarScale | 252 | 640 × 272 | 219 | 252 | 6.56 | 14.49 | 2.21 |
Girl | 500 | 128 × 96 | 465 | 481 | 18.14 | 26.32 | 1.45 |
Redteam | 1000 | 352 × 240 | 936 | 1000 | 18.10 | 25.83 | 1.44 |
CarDark | 389 | 320 × 240 | 369 | 389 | 7.01 | 16.36 | 2.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, X.; Fei, S.; Wang, Y.; Du, W. A Visual Object Tracking Algorithm Based on Improved TLD. Algorithms 2020, 13, 15. https://doi.org/10.3390/a13010015
Zhen X, Fei S, Wang Y, Du W. A Visual Object Tracking Algorithm Based on Improved TLD. Algorithms. 2020; 13(1):15. https://doi.org/10.3390/a13010015
Chicago/Turabian StyleZhen, Xinxin, Shumin Fei, Yinmin Wang, and Wei Du. 2020. "A Visual Object Tracking Algorithm Based on Improved TLD" Algorithms 13, no. 1: 15. https://doi.org/10.3390/a13010015
APA StyleZhen, X., Fei, S., Wang, Y., & Du, W. (2020). A Visual Object Tracking Algorithm Based on Improved TLD. Algorithms, 13(1), 15. https://doi.org/10.3390/a13010015