A Multiobjective Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows
Abstract
:1. Introduction
2. Problem Definition and Formulation
3. Problem Solution
3.1. Pareto Optimal
3.2. Time-Oriented Nearest Neighbor Algorithm
3.3. Multiobjective Large Neighborhood Search
3.3.1. Removal Operators
Route Removal
Random Customers Removal
Distant Customers Removal
Waiting-Time Removal
Distant and Waiting-Time Removal
3.3.2. Insertion Operators
Closer Customer Insertion
Insertion for Minimizing the Number of Vehicles
3.3.3. General Framework
4. Experimental Results and Discussion
4.1. Comparisons with Best Known Results
4.2. Discussion on Real-Life Implementation of the Algorithm
5. Conclusions and Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. RC202: Number of Vehicles = 7, Total Distance Traveled = 1117.41
- Route 1: 0 → 65 - 83 → 64 → 23 → 21 → 48 → 18 → 19 → 49 → 22 → 20 → 24 → 25 → 77 → 75 → 58 → 52 → 82 → 0
- Route 2: 0 → 69 → 68 → 88 → 53 → 99 → 57 → 86 → 87 → 9 → 10 → 97 → 59 → 74 → 13 → 17 → 60 → 100 → 70 → 0
- Route 3: 0 → 14 → 47 → 16 → 15 → 11 → 12 → 78 → 73 → 79 → 7 → 6 → 8 → 46 → 4 → 2 → 55 → 0
- Route 4: 0 → 71 → 67 → 62 → 76 → 51 → 84 → 56 → 66 → 0
- Route 5: 0 → 92 → 95 → 85 → 63 → 33 → 34 → 31 → 29 → 27 → 26 → 28 → 30 → 32 → 89 → 50 → 93 → 96 → 94 → 91 → 80 → 0
- Route 6: 0 → 45 → 5 → 3 → 1 → 42 → 39 → 37 → 36 → 44 → 41 → 38 → 40 → 43 → 35 → 72 → 54 → 68 → 0
- Route 7: 0 → 81 → 61 → 90 → 0
Appendix A.2. RC207: Number of Vehicles = 5, Total Distance Traveled = 970.78
- Route 1: 0 → 92 → 95 → 67 → 31 → 29 → 28 → 30 → 63 → 85 → 76 → 18 → 21 → 23 → 19 → 49 → 22 → 51 → 84 → 62 → 50 → 34 → 27 → 26 → 32 → 33 → 89 → 56 → 91 → 80 → 0
- Route 2: 0 → 69 → 98 → 88 → 78 → 73 → 79 → 7 → 6 → 2 → 8 → 5 → 3 → 1 → 45 → 4 → 46 → 60 → 55 → 100 → 70 → 68 → 0
- Route 3: 0 → 61 → 72 → 71 → 93 → 94 → 81 → 42 → 44 → 40 → 36 → 35 → 37 → 38 → 39 → 43 → 41 → 54 → 96 → 0
- Route 4: 0 → 64 → 83 → 99 → 52 → 86 → 75 → 59 → 87 → 74 → 57 → 65 → 90 → 0
- Route 5: 0 → 82 → 53 → 12 → 14 → 47 → 17 → 16 → 15 → 11 → 10 → 9 → 13 → 97 → 58 → 77 → 25 → 48 → 20 → 24 → 66 → 0
Appendix A.3. R201: Number of Vehicles = 7, Total Distance Traveled = 1156.73
- Route 1: 0 → 5 → 83 → 45 → 82 → 47 → 36 → 19 → 11 → 64 → 49 → 46 → 48 → 0
- Route 2: 0 → 95 → 59 → 92 → 42 → 15 → 14 → 98 → 61 → 16 → 44 → 38 → 86 → 85 → 99 → 6 → 94 → 53 → 26 → 0
- Route 3: 0 → 28 → 12 → 29 → 76 → 21 → 73 → 40 → 87 → 57 → 43 → 37 → 97 → 96 → 13 → 58 → 0
- Route 4: 0 → 33 → 65 → 71 → 30 → 51 → 9 → 81 → 79 → 78 → 34 → 50 → 3 → 68 → 54 → 0
- Route 5: 0 → 2 → 72 → 39 → 67 → 23 → 75 → 22 → 41 → 56 → 74 → 4 → 55 → 25 → 24 → 80 → 77 → 0
- Route 6: 0 → 52 → 69 → 31 → 88 → 7 → 18 → 8 → 84 → 17 → 91 → 100 → 93 → 60 → 89 → 0
- Route 7: 0 → 27 → 62 → 63 → 90 → 10 → 20 → 66 → 35 → 32 → 70 → 1 → 0
References
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6. [Google Scholar] [CrossRef]
- Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of Green Vehicle Routing Problem: Past and future trends. Expert Syst. Appl. 2014, 41, 1118–1138. [Google Scholar] [CrossRef]
- Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper. Res. Int. J. 2020. [Google Scholar] [CrossRef]
- Juárez Pérez, M.; Pérez Loaiza, R.E.; Quintero Flores, P.M.; Atriano Ponce, O.; Flores Peralta, C. A Heuristic Algorithm for the Routing and Scheduling Problem with Time Windows: A Case Study of the Automotive Industry in Mexico. Algorithms 2019, 12, 111. [Google Scholar] [CrossRef] [Green Version]
- Nagata, Y.; Bräysy, O.; Dullaert, W. A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 2010, 37, 724–737. [Google Scholar] [CrossRef]
- Ait Haddadene, S.; Labadie, N.; Prodhon, C. Bicriteria Vehicle Routing Problem with Preferences and Timing Constraints in Home Health Care Services. Algorithms 2019, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Taş, D.; Jabali, O.; Van Woensel, T. A vehicle routing problem with flexible time windows. Comput. Oper. Res. 2014, 52, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Taillard, E.; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.-Y. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows. Transp. Sci. 1997, 31, 170–186. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Rahman, M.S. Vehicle routing problems with soft time windows. In Proceedings of the 2012 7th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2012; pp. 634–638. [Google Scholar]
- Wu, L.; He, Z.; Chen, Y.; Wu, D.; Cui, J. Brainstorming-Based Ant Colony Optimization for Vehicle Routing with Soft Time Windows. IEEE Access 2019, 7, 19643–19652. [Google Scholar] [CrossRef]
- Hashimoto, H.; Ibaraki, T.; Imahori, S.; Yagiura, M. The vehicle routing problem with flexible time windows and traveling times. Discret. Appl. Math. 2006, 154, 2271–2290. [Google Scholar] [CrossRef] [Green Version]
- Koskosidis, Y.A.; Powell, W.B.; Solomon, M.M. An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints. Transp. Sci. 1992, 26, 69–85. [Google Scholar] [CrossRef]
- Arnold, F.; Sörensen, K. What makes a VRP solution good? The generation of problem-specific knowledge for heuristics. Comput. Oper. Res. 2019, 106, 280–288. [Google Scholar] [CrossRef]
- Ibaraki, T.; Kubo, M.; Masuda, T.; Uno, T.; Yagiura, M. Effective local search algorithms for the vehicle routing problem with general time window constraints. In Proceedings of the MIC, Porto, Portugal, 16–20 July 2001. [Google Scholar]
- Kalayci, C.B.; Kaya, C. An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl. 2016, 66, 163–175. [Google Scholar] [CrossRef]
- El-Sherbeny, N.A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. J. King Saud Univ. Sci. 2010, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transp. Sci. 2005, 39, 104–118. [Google Scholar] [CrossRef]
- Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 1987, 35, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In Principles and Practice of Constraint Programming—CP98, Proceedings of the International Conference on Principles and Practice of Constraint Programming, Pisa, Italy, 26–30 October 1998; Maher, M., Puget, J.-F., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 417–431. [Google Scholar]
- Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transp. Sci. 2006, 40, 455–472. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Tan, K.C.; Chew, Y.H.; Lee, L.H. A Hybrid Multiobjective Evolutionary Algorithm for Solving Vehicle Routing Problem. Comput. Optim. Appl. 2006, 34, 115–151. [Google Scholar] [CrossRef]
- Ombuki, B.; Ross, B.J.; Hanshar, F. Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 2006, 24, 17–30. [Google Scholar] [CrossRef]
- Chiang, T.C.; Hsu, W.H. A knowledge-based evolutionary algorithm for the multiobjective vehicle routing problem with time windows. Comput. Oper. Res. 2014, 45, 25–37. [Google Scholar] [CrossRef]
- Garcia-Najera, A.; Bullinaria, J.A. An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 2011, 38, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Baños, R.; Ortega, J.; Gil, C.; Márquez, A.L.; De Toro, F. A hybrid meta-heuristic for multi-objective Vehicle Routing Problems with Time Windows. Comput. Ind. Eng. 2013, 65, 286–296. [Google Scholar] [CrossRef]
- Yun, Y.; Nakayama, H.; Yoon, M. Generation of Pareto optimal solutions using generalized DEA and PSO. J. Glob. Optim. 2016, 64, 49–61. [Google Scholar] [CrossRef]
- Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Demir, E.; Bektaş, T.; Laporte, G. An adaptive large neighborhood search heuristic for the Pollution-Routing Problem. Eur. J. Oper. Res. 2012, 223, 346–359. [Google Scholar] [CrossRef]
- Transportation Optimization Portal/VRPTW. Available online: https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/ (accessed on 18 September 2020).
- Ghoseiri, K.; Ghannadpour, S.F. Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl. Soft Comput. 2010, 10, 1096–1107. [Google Scholar] [CrossRef]
- Desrochers, M.; Desrosiers, J.; Solomon, M. A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 1992, 40, 342–354. [Google Scholar] [CrossRef]
- Tavares, J.; Pereira, F.B.; Machado, P.; Costa, E. On the influence of GVR in vehicle routing. In Proceedings of the SAC, Melbourne, FL, USA, 9–12 March 2003; Volume 3, pp. 753–758. [Google Scholar]
- Lau, H.C.; Lim, Y.F.; Liu, Q.Z. Diversification of search neighborhood via constraint-based local search and its applications to VRPTW. In Proceedings of the 3rd International Workshop on Integration of AI and OR Techniques (CP-AI-OR), Kent, UK, 8–10 April 2001; pp. 1–15. [Google Scholar]
- Kallehauge, B.; Larsen, J.; Madsen, O.B.G. Lagrangean duality applied on vehicle routing with time windows. Comput. Oper. Res. 2006, 33, 1464–1487. [Google Scholar] [CrossRef]
- Cook, W.; Rich, J.L. A Parallel Cutting-Plane Algorithm for the Vehicle Routing Problem with Time Windows; Rice University: Houston, TX, USA, 1999. [Google Scholar]
- Yu, B.; Yang, Z.Z.; Yao, B.Z. A hybrid algorithm for vehicle routing problem with time windows. Expert Syst. Appl. 2011, 38, 435–441. [Google Scholar] [CrossRef]
- Rochat, Y.; Taillard, É.D. Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1995, 1, 147–167. [Google Scholar] [CrossRef]
- Kohl, N.; Desrosiers, J.; Madsen, O.B.G.; Solomon, M.M.; Soumis, F. 2-Path Cuts for the Vehicle Routing Problem with Time Windows. Transp. Sci. 1999, 33. [Google Scholar] [CrossRef]
- Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1273&rep=rep1&type=pdf (accessed on 25 September 2020).
- Alvarenga, G.B.; Mateus, G.R.; de Tomi, G. A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Comput. Oper. Res. 2007, 34, 1561–1584. [Google Scholar] [CrossRef]
- Li, H.; Lim, A. Local search with annealing-like restarts to solve the VRPTW. Eur. J. Oper. Res. 2003, 150, 115–127. [Google Scholar] [CrossRef]
- Potvin, J.Y.; Bengio, S. The Vehicle Routing Problem with Time Windows Part II: Genetic Search. INFORMS J. Comput. 1996, 8, 165–172. [Google Scholar] [CrossRef]
- Homberger, J.; Gehring, H. Two evolutionary metaheuristics for the vehicle routing problem with time windows. INFOR Inf. Syst. Oper. Res. 1999, 37, 297–318. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, L.-M.; Gendreau, M.; Pesant, G. Using constraint-based operators to solve the vehicle routing problem with time windows. J. Heuristics 2002, 8, 43–58. [Google Scholar] [CrossRef]
- Thangiah, S.R.; Osman, I.H.; Sun, T. Hybrid Genetic Algorithm, Simulated Annealing and Tabu Search Methods for Vehicle Routing Problems with Time Windows; Technical Report No. SRU CpSc-TR-94-27; Computer Science Department, Slippery Rock University: Slippery Rock, PA, USA, 1994; Volume 69. [Google Scholar]
- Labadi, N.; Prins, C.; Reghioui, M. A memetic algorithm for the vehicle routing problem with time windows. RAIRO-Operations Res. 2008, 42, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Mester, D.; Bräysy, O.; Dullaert, W. A multi-parametric evolution strategies algorithm for vehicle routing problems. Expert Syst. Appl. 2007, 32, 508–517. [Google Scholar] [CrossRef]
- Barbucha, D. A cooperative population learning algorithm for vehicle routing problem with time windows. Neurocomputing 2014, 146, 210–229. [Google Scholar] [CrossRef]
- de Oliveira, H.C.; Vasconcelos, G.C. A hybrid search method for the vehicle routing problem with time windows. Ann. Oper. Res. 2010, 180, 125–144. [Google Scholar]
- Gayialis, S.P.; Tatsiopoulos, I.P. Design of an IT-driven decision support system for vehicle routing and scheduling. Eur. J. Oper. Res. 2004, 152, 382–398. [Google Scholar] [CrossRef]
- Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A.; Kechagias, E.; Ponis, S.T. Developing an Advanced Cloud-Based Vehicle Routing and Scheduling System for Urban Freight Transportation. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Seoul, Korea, 26–30 August 2018; pp. 190–197. [Google Scholar]
- Rincon-Garcia, N.; Waterson, B.J.; Cherrett, T.J. Requirements from vehicle routing software: Perspectives from literature, developers and the freight industry. Transp. Rev. 2018, 38, 117–138. [Google Scholar] [CrossRef]
- Veres, P.; Bányai, T.; Illés, B. Intelligent Transportation Systems to Support Production Logistics. In Proceedings of the Vehicle and Automotive Engineering; Jármai, K., Bolló, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 245–256. [Google Scholar]
- Kechagias, E.P.; Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A. An Application of a Multi-Criteria Approach for the Development of a Process Reference Model for Supply Chain Operations. Sustainability 2020, 12, 5791. [Google Scholar] [CrossRef]
Problem Type | MOLNSNV | MOLNSTD | BPNV | BPTD | Reference | Time (sec) | Deviation (%) |
---|---|---|---|---|---|---|---|
C101 | 10 | 828.94 | 10 | 827.3 | [32] | 30.5 | 0.20 |
C102 | 10 | 828.94 | 10 | 827.3 | [32] | 28.2 | 0.20 |
C103 | 10 | 828.94 | 10 | 826.3 | [33] | 27.6 | 0.32 |
C104 | 10 | 828.94 | 10 | 822.9 | [33] | 30.3 | 0.73 |
C105 | 10 | 828.94 | 10 | 827.3 | [33] | 26.9 | 0.20 |
C106 | 10 | 828.94 | 10 | 827.3 | [32] | 27.5 | 0.20 |
C107 | 10 | 828.94 | 10 | 827.3 | [33] | 29.1 | 0.20 |
C108 | 10 | 828.94 | 10 | 827.3 | [33] | 27.8 | 0.20 |
C109 | 10 | 828.94 | 10 | 827.3 | [33] | 29.8 | 0.20 |
R101 | 19 | 1654.93 | 18 | 1607.7 | [32] | 65.5 | - |
R102 | 18 | 1475.33 | 17 | 1434 | [32] | 55.5 | - |
R103 | 14 | 1240.44 | 13 | 1175.67 | [34] | 80.5 | - |
R104 | 10 | 1010.72 | 10 | 974.2 | [22] | 65.2 | 3.75 |
R105 | 15 | 1389.85 | 15 | 1346.12 | [35] | 78.5 | 3.25 |
R106 | 13 | 1269.14 | 13 | 1234.6 | [36] | 85.6 | 2.80 |
R107 | 11 | 1102.72 | 11 | 1051.84 | [35] | 87.8 | 4.84 |
R108 | 10 | 991.57 | 10 | 942.9 | [24] | 95.2 | 5.16 |
R109 | 12 | 1177.76 | 12 | 1101.99 | [37] | 99.2 | 6.88 |
R110 | 12 | 1129.60 | 12 | 1068 | [36] | 85.0 | 5.77 |
R111 | 12 | 1108.70 | 12 | 1048.7 | [36] | 86.3 | 5.72 |
R112 | 10 | 964.15 | 10 | 953.63 | [38] | 101.6 | 1.10 |
RC101 | 15 | 1662.56 | 15 | 1619.8 | [39] | 55.6 | 2.64 |
RC102 | 14 | 1486.35 | 14 | 1461.33 | [24] | 48.6 | 1.71 |
RC103 | 12 | 1291.95 | 12 | 1196.12 | [22] | 72.1 | 8.01 |
RC104 | 10 | 1162.53 | 10 | 1135.48 | [40] | 46.3 | 2.38 |
RC105 | 15 | 1604.53 | 15 | 1519.29 | [24] | 56.3 | 5.61 |
16 | 1575.31 | 16 | 1518.6 | [41] | 56.3 | 3.73 | |
RC106 | 13 | 1400.09 | 13 | 1371.69 | [22] | 62.4 | 2.07 |
RC107 | 12 | 1259.55 | 12 | 1212.83 | [41] | 47.9 | 3.85 |
RC108 | 11 | 1205.13 | 11 | 1117.53 | [41] | 43.6 | 7.84 |
Problem Type | MOLNSNV | MOLNSTD | BPNV | BPTD | Reference | Time (sec) | Deviation (%) |
---|---|---|---|---|---|---|---|
C201 | 3 | 591.56 | 3 | 589.1 | [36] | 18.5 | 0.42 |
C202 | 3 | 591.56 | 3 | 589.1 | [36] | 19.3 | 0.42 |
C203 | 3 | 591.56 | 3 | 591.17 | [42] | 25.6 | 0.07 |
C204 | 3 | 590.6 | 3 | 590.6 | [43] | 21.6 | 0.00 |
C205 | 3 | 588.88 | 3 | 586.4 | [36] | 22.5 | 0.42 |
C206 | 3 | 588.49 | 3 | 586 | [36] | 17.8 | 0.42 |
C207 | 3 | 588.29 | 3 | 585.8 | [36] | 17.2 | 0.43 |
C208 | 3 | 588.32 | 3 | 585.8 | [22] | 24.5 | 0.43 |
R201 | 4 | 1305.25 | 4 | 1252.37 | [44] | 82.3 | 4.22 |
5 | 1208.55 | 5 | 1193.29 | [24] | 82.3 | 1.28 | |
6 | 1174.98 | 6 | 1171.2 | [24] | 82.3 | 0.32 | |
7 | 1156.73 | 7 | 1173.75 | [23] | 82.3 | −1.45 | |
R202 | 4 | 1093.67 | 4 | 1079.39 | [24] | 78.2 | 1.32 |
5 | 1065.73 | 5 | 1041.1 | [24] | 78.2 | 2.37 | |
R203 | 4 | 915.43 | 4 | 901.2 | [24] | 65.2 | 1.58 |
5 | 901.72 | 5 | 890.50 | [23] | 65.2 | 1.26 | |
R204 | 3 | 775.99 | 3 | 749.42 | [24] | 72.3 | 3.55 |
4 | 750.32 | 4 | 743.23 | [24] | 72.3 | 0.95 | |
R205 | 3 | 1075.1 | 3 | 994.43 | [45] | 68.9 | 8.11 |
4 | 975.21 | 4 | 959.74 | [25] | 68.9 | 1.61 | |
5 | 964.23 | 5 | 954.1 | [23] | 68.9 | 1.06 | |
R206 | 3 | 979.21 | 3 | 906.14 | [46] | 62.3 | 8.06 |
4 | 909.83 | 4 | 889.39 | [23] | 62.3 | 2.30 | |
5 | 907.35 | 5 | 879.89 | [47] | 62.3 | 3.12 | |
R207 | 3 | 851.89 | 3 | 812.76 | [24] | 61.9 | 4.81 |
R208 | 2 | 754.99 | 2 | 725.75 | [48] | 68.5 | 4.03 |
3 | 731.84 | 3 | 706.86 | [47] | 68.5 | 3.53 | |
R209 | 4 | 898.23 | 4 | 864.15 | [24] | 58.6 | 3.94 |
R210 | 4 | 941.58 | 4 | 924.79 | [24] | 52.9 | 1.82 |
R211 | 3 | 838.14 | 3 | 767.82 | [49] | 56.5 | 9.16 |
4 | 782.75 | 4 | 755.82 | [50] | 56.5 | 3.56 | |
RC201 | 4 | 1497.89 | 4 | 1406.91 | [48] | 38.9 | 6.47 |
5 | 1329.59 | 5 | 1279.65 | [37] | 38.9 | 3.90 | |
6 | 1296.83 | - | - | - | 38.9 | - | |
7 | 1284.48 | 7 | 1273.51 | [24] | 38.9 | 0.86 | |
8 | 1281.81 | 8 | 1272.28 | [24] | 38.9 | 0.75 | |
RC202 | 4 | 1199.53 | 4 | 1162.54 | [23] | 36.5 | 3.18 |
5 | 1140.2 | 5 | 1118.66 | [22] | 36.5 | 1.93 | |
7 | 1109.21 | - | - | - | 36.5 | - | |
8 | 1104.94 | 8 | 1099.54 | [47] | 36.5 | 0.49 | |
RC203 | 4 | 985.54 | 4 | 945.08 | [24] | 32.1 | 1.42 |
5 | 938.04 | 5 | 926.82 | [24] | 32.1 | 1.21 | |
RC204 | 3 | 805.46 | 3 | 798.41 | [48] | 31.8 | 0.88 |
RC205 | 5 | 1340.38 | 5 | 1236.78 | [48] | 33.6 | 8.38 |
6 | 1223.50 | 6 | 1187.98 | [24] | 33.6 | 2.99 | |
7 | 1162.43 | 7 | 1161.81 | [41] | 33.6 | 0.05 | |
RC206 | 3 | 1316.42 | 3 | 1146.32 | [44] | 34.1 | 14.84 |
4 | 1121.83 | 4 | 1081.83 | [24] | 34.1 | 3.70 | |
5 | 1097.07 | 5 | 1068.77 | [24] | 34.1 | 2.65 | |
RC207 | 4 | 1031.62 | 4 | 1001.85 | [25] | 32.5 | 2.97 |
5 | 970.78 | 5 | 982.58 | [23] | 32.5 | −1.20 | |
RC208 | 3 | 859.13 | 3 | 828.14 | [14] | 31.0 | 3.74 |
4 | 810.99 | 4 | 783.035 | [24] | 31.0 | 3.57 |
Problem Case | MOLNSNV | MOLNSTD | BPNV | BPTD | Time (sec) | Deviation in the NV (%) | Deviation in the TD (%) |
---|---|---|---|---|---|---|---|
C1 | 100.2 | 460,310.32 | 94.2 | 416,797.49 | 624 | 6.37% | 10.44% |
C2 | 31.8 | 181,653.35 | 28.9 | 166,304.04 | 559 | 10.03% | 9.23% |
R1 | 95.8 | 525,362.56 | 91.9 | 470,041.69 | 800 | 4.24% | 11.77% |
R2 | 20.2 | 314,856.25 | 19 | 288,457.54 | 810 | 6.32% | 9.15% |
RC1 | 93.6 | 486,596.35 | 90 | 439,493.53 | 558 | 4.00% | 10.72% |
RC2 | 19.8 | 268,569.78 | 18.2 | 239,221.86 | 741 | 8.79% | 12.27% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P.; Papadopoulos, G.A.; Tatsiopoulos, I.P. A Multiobjective Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows. Algorithms 2020, 13, 243. https://doi.org/10.3390/a13100243
Konstantakopoulos GD, Gayialis SP, Kechagias EP, Papadopoulos GA, Tatsiopoulos IP. A Multiobjective Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows. Algorithms. 2020; 13(10):243. https://doi.org/10.3390/a13100243
Chicago/Turabian StyleKonstantakopoulos, Grigorios D., Sotiris P. Gayialis, Evripidis P. Kechagias, Georgios A. Papadopoulos, and Ilias P. Tatsiopoulos. 2020. "A Multiobjective Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows" Algorithms 13, no. 10: 243. https://doi.org/10.3390/a13100243
APA StyleKonstantakopoulos, G. D., Gayialis, S. P., Kechagias, E. P., Papadopoulos, G. A., & Tatsiopoulos, I. P. (2020). A Multiobjective Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem with Time Windows. Algorithms, 13(10), 243. https://doi.org/10.3390/a13100243