GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes
Abstract
:1. Introduction
1.1. Instantaneous Angular Speed (IAS) Review
1.2. Brief Literature Review of Computer Vision
1.3. GA and Template Matching: A Review
2. Materials and Methods
2.1. Data Description: the SURVISHNO 2019 Challenge Video and Its Critical Issues
- Spatial Aliasing related to the rolling shutter effect,
- Temporal Aliasing due to the 30-fps sampling rate given the 10 equal blades of the fan,
- Additional autofocus distortions.
2.2. Matched Filters and Template Matching
- The template is placed at in a matrix of the same size of the search matrix (Equation (7)),
- The entrywise product (also known as Hadamard or Schur product, here “”) is performed finding the matrix (Equation (8))
- The correlation at () is obtained by summing all the components in (Equation (9))
- By letting and vary in the range , the whole cross-correlation matrix is computed.
- (a)
- noise, illumination changes, and occlusions in the search image,
- (b)
- background changes and clutter,
- (c)
- rigid and non-rigid transformations, rotations, and scale changes (i.e., images are a projection of a 3D scene onto a 2D plane),
- (d)
- high computational cost.
2.3. Image Preprocessing
- Image cropping
- Gray monochrome conversion and image binarization (thresholding)
- Edge Detection
2.3.1. Image Cropping
2.3.2. Gray Monochrome Conversion and Image Binarization (Thresholding)
2.3.3. Edge Detection
2.4. GA-adaptive Template Matching
2.4.1. Template Parametric Model
2.4.2. Objective Function
2.4.3. Genetic Algorithm Optimization
- Exploration: the optimizer discovers a wide region of the search space,
- Exploitation: the optimizer “pounds the pavement” on a limited but promising region,
- Reliability: repeatability of the fund solution.
- Population Size: .
- Elite Count: 5%. It defines the number of best individuals selected as a percentage of .
- Crossover Fraction: 80%. It defines the offspring quantity at the next generation as a percentage of . As the total is fixed, the percentage of discarded individuals equals the crossover fraction.
- Default mutation: Shrinking Gaussian. Each newborn features a degree of random mutation which decreases in time according to the linear law: . Where , c , and is the generation index, increasing with time.
- Stopping criterion: maximum number of generations .
2.5. Overall Methodology
- GA optimization of the outer hexagon template (Figure 7a) to match the search image (e.g., Figure 4c).
- ○
- The outer hexagon path is used to make a mask isolating the foreground of interest and improving the next step.
- GA optimization of the inner hexagon template (Figure 7b) to match the search image cropped using the outer hexagon path as mask.
- ○
- The inner hexagon path is used to make a mask for isolating the foreground of interest and improving the next step.
- ○
- The three inner hexagon diagonals are tested to find the diagonal around which the 8.8 logo is reported.
- GA optimization of the 8.8 logo (Figure 7c) to match the search image cropped using the inner hexagon path as a mask.
IAS Estimation
- The analytic signal is computed via Hilbert transform
- The instantaneous frequency is defined as
- From which, a more suitable discrete-time () implementation can be derived [56]
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Zhao, M. A review and strategy for the diagnosis of speed-varying machinery. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June 2014. [Google Scholar]
- Fyfe, K.R.; Munck, E.D.S. Analysis of computed order tracking. MSSP 1997. [Google Scholar] [CrossRef]
- Brandt, A.; Lago, T.; Ahlin, K.; Tuma, J. Main principles and limitations of current order tracking methods. Sound Vib. 2005, 39, 19–22. [Google Scholar]
- Bonnardot, F.; El Badaoui, M.; Randall, R.B.; Daniere, J.; Guillet, F. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). MSSP 2005. [Google Scholar] [CrossRef]
- Coats, M.; Sawalhi, N.; Randall, R.B. Extraction of tacho information from a vibration signal for improved synchronous averaging. Acoustics 2009. [Google Scholar]
- Remond, D.; Antoni, J.; Randall, R.B. Instantaneous Angular Speed (IAS) processing and related angular applications. MSSP 2014, 45, 24–27. [Google Scholar] [CrossRef]
- Peeters, C.; Leclère, Q.; Antoni, J.; Lindahl, P.; Donnal, J.; Leeb, S.; Helsen, J. Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data. MSSP 2019. [Google Scholar] [CrossRef]
- Antoni, J.; Griffaton, J.; André, H.; Avendaño-Valencia, L.D.; Bonnardot, F.; Cardona-Morales, O.; Castellanos-Dominguez, G.; Daga, A.P.; Leclère, Q.; Vicuña, C.M.; et al. Feedback on the surveillance 8 challenge: vibration-based diagnosis of a safran aircraft engine. MSSP 2017. [Google Scholar] [CrossRef]
- Ben Sasi, A.Y.; Gu, F.; Payne, B.; Ball, A. Instantaneous angular speed monitoring of electric motors. J. Qual. Maint. Eng. 2004. [Google Scholar] [CrossRef]
- Lebaroud, A.; Clerc, G. Diagnosis of Induction Motor Faults Using Instantaneous Frequency Signature Analysis. ICEM 2008. [Google Scholar] [CrossRef]
- Spagnol, M.; Bregant, L.; Boscarol, A. Electrical Induction Motor Higher Harmonics Analysis Based on Instantaneous Angular Speed Measurement. In Proceedings of the Fourth International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO’2014, Lyon, France, 15–17 December 2014. [Google Scholar] [CrossRef]
- Yang, J.; Pu, L.; Wang, Z.; Zhou, Y.; Yan, X. Fault detection in a diesel engine by analysing the instantaneous angular speed. MSSP 2001. [Google Scholar] [CrossRef]
- Desbazeille, M.; Randall, R.B.; Guillet, F.; El Badaoui, M.; Hoisnard, C. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft. MSSP 2010. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, Y. Monitoring and fault diagnosis system for the diesel engine based on instantaneous speed. ICCAE Conf. 2010. [Google Scholar] [CrossRef]
- Antonopoulos, A.K.; Hountalas, D.T. Effect of instantaneous rotational speed on the analysis of measured diesel engine cylinder pressure data. Energy Convers Manag. 2012. [Google Scholar] [CrossRef]
- Lin, T.; Tan, A.; Ma, L.; Mathew, J. Condition monitoring and fault diagnosis of diesel engines using instantaneous angular speed analysis. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gu, L.; Yang, B.; Wang, S.; Yuan, H. A new evaluation method on hydraulic system using the instantaneous speed fluctuation of hydraulic motor. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2018. [Google Scholar] [CrossRef]
- Roy, S.K.; Mohanty, A.R.; Kumar, C.S. Fault detection in a multistage gearbox by time synchronous averaging of the instantaneous angular speed. J. Vib. Control 2016. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X. A new strategy of instantaneous angular speed extraction and its application to multistage gearbox fault diagnosis. J. Sound Vib. 2017. [Google Scholar] [CrossRef]
- Zhao, M.; Jia, X.; Lin, J.; Lei, Y.; Lee, J. Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. MSSP 2018. [Google Scholar] [CrossRef]
- Liang, L.; Liu, F.; Kong, X.; Li, M.; Xu, G. Application of Instantaneous Rotational Speed to Detect Gearbox Faults Based on Double Encoders. Chin. J. Mech. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zimroz, R.; Urbanek, J.; Barszcz, T.; Bartelmus, W.; Millioz, F.; Martin, N. Measurement of Instantaneous Shaft Speed by Advanced Vibration Signal Processing—Application to Wind Turbine Gearbox. Metrol. Meas. Syst. 2011. [Google Scholar] [CrossRef] [Green Version]
- Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J.B.; Rémond, D. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. MSSP 2010. [Google Scholar] [CrossRef] [Green Version]
- Bourdon, A.; André, H.; Rémond, D. Introducing angularly periodic disturbances in dynamic models of rotating systems under non-stationary conditions. MSSP 2014. [Google Scholar] [CrossRef] [Green Version]
- Lamraoui, M.; Thomas, M.; El Badaoui, M.; Girardin, F. Indicators for monitoring chatter in milling based on instantaneous angular speeds. MSSP 2014. [Google Scholar] [CrossRef]
- Leclere, Q.; André, H.; Antoni, J. A multi-order probabilistic approach for Instantaneous Angular Speed tracking. debriefing of the CMMNO’14 diagnosis contest. MSSP 2016. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gu, F.; Harris, G.; Ball, A.; Bennett, N.; Travis, K. The measurement of instantaneous angular speed. MSSP 2005. [Google Scholar] [CrossRef]
- Sushma Sri, M. A study on motion estimation. Int. J. Mod. Trends Eng. Res. (IJMTER) 2017. [Google Scholar] [CrossRef]
- Torr, P.H.S.; Zisserman, A. Feature Based Methods for Structure and Motion Estimation. ICCV Workshop Vis. Algorithms 1999. [Google Scholar] [CrossRef]
- Irani, M.; Anandan, P. About Direct Methods. ICCV Workshop Vis. Algorithms 1999. [Google Scholar] [CrossRef]
- Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35, 2279–2301. [Google Scholar] [CrossRef]
- Tolba, A.; El-Baz, A.; El-Harby, A. Face Recognition: A Literature Review. Int. J. Signal Process. 2005, 2, 88–103. [Google Scholar]
- Solanki, K.; Pittalia, P. Review of Face Recognition Techniques. Int. J. Comput. Appl. 2016, 133, 20–24. [Google Scholar] [CrossRef]
- Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Leavers, V.F. Computer Vision: Shape Detection. In Shape Detection in Computer Vision Using the Hough Transform; Springer: London, UK, 1992. [Google Scholar] [CrossRef]
- Talmi, I.; Mechrez, R.; Zelnik-Manor, L. Template Matching with Deformable Diversity Similarity. Available online: http://openaccess.thecvf.com/content_cvpr_2017/html/Talmi_Template_Matching_With_CVPR_2017_paper.html (accessed on 20 December 2019).
- Lee, H.; Kwon, H.; Robinson, R.M.; Nothwang, W.D. DTM: Deformable Template Matching. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016. [Google Scholar]
- Muramatsu, S. Strategy of high-speed template matching and its optimization by using GA. Syst. Comput. Jpn. 2003. [Google Scholar] [CrossRef]
- Karungaru, S.; Fukumi, M.; Akamatsu, N. Face recognition using genetic algorithm based template matching. IEEE Int. Symp. Commun. Inf. Technol. 2004. [Google Scholar] [CrossRef]
- Velasco, H.M.G.; Orellana, C.J.G.; Macías, M.M.; Caballero, R.G.; Sotoca, M.I.A. Application of Repeated GA to Deformable Template Matching in Cattle Images. In Proceedings of the Third International Workshop, AMDO 2004, Palma de Mallorca, Spain, 22–24 September 2004. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Li, M. A Template Matching Method Based on Genetic Algorithm Optimization. Appl. Mech. Mater. 2012. [Google Scholar] [CrossRef]
- El-Baz, A.; Elnakib, A.; Abou-El-Ghar, M.; Gimel’farb, G.; Falk, R.; Farag, A. Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. Int. J. Biomed. Imaging 2013. [Google Scholar] [CrossRef]
- Kay, S.; Rangaswamy, M. The Ubiquitous Matched Filter: A Tutorial and Application to Radar Detection. In Classical, Semi-classical and Quantum Noise; Cohen, L., Poor, H., Scully, M., Eds.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Turin G., L. An introduction to matched filters. IRE Trans. Inf. Theory 1960, 6, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Vleck, J.V.; Middleton, D. A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise. J. Appl. Phys. 1946, 17, 940–971. [Google Scholar] [CrossRef] [Green Version]
- North, D.O. An analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems. Proc. IEEE 1943, 51, 1016–1027. [Google Scholar] [CrossRef]
- Mohd, F.Z.; Hoo, S.C.; Shahrel, A.S. Object Shape Recognition in Image for Machine Vision Application. Int. J. Comput. Theory Eng. 2012, 76–80. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, S.; Pal, A.; Sharma, S. Edge Detection Based Shape Identification. Available online: https://arxiv.org/ftp/arxiv/papers/1604/1604.02030.pdf (accessed on 20 December 2019).
- Chai, T.Y.; Rizon, M.; San, W.; Seong, T. Facial Features for Template Matching Based Face Recognition. Am. J. Appl. Sci. 2009. [Google Scholar] [CrossRef]
- ITU-R recommendation BT.601 standard, revision 7. 2011. Available online: https://www.itu.int/rec/R-REC-BT.601/en (accessed on 20 December 2019).
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Roth, G. Adaptive Thresholding using the Integral Image. J. Graph. Tools 2007. [Google Scholar] [CrossRef]
- MATLAB Matworks “imbinarize” function. Available online: https://www.mathworks.com/help/images/ref/imbinarize.html (accessed on 20 December 2019).
- Sobel, I.; Feldman, G. An Isotropic 3x3 Image Gradient Operator. Available online: https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator (accessed on 20 December 2019).
- MATLAB Matworks “edge” function. Available online: https://it.mathworks.com/help/images/ref/edge.html (accessed on 20 December 2019).
- Barnes, A.E. The calculation of instantaneous frequency and instantaneous bandwidth. Geophysics 1992, 57, 1396–1524. [Google Scholar] [CrossRef]
Parameter | Description | Parameter | Description |
---|---|---|---|
Center of the outer hexagon (OH) | Distance of 8.8 logo from () | ||
Radius of the inscribing circle (OH) | Deviation from ax slope direction | ||
Rotation of the OH | Logo size = hollow circles radii | ||
Thickness of OH | Logo’s circles radii | ||
Center of the inner hexagon (IH) | Logo’s dot radius | ||
Radius of the inscribing circle (IH) | Logo’s height | ||
Rotation of the IH | Logo’s width | ||
Thickness of the IH | Logo’s width ratio | ||
8.8 intercepting diagonal of IH | Distance of “8” from Logo’s dot |
1 | 1 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | 1 | |
0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daga, A.P.; Garibaldi, L. GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms 2020, 13, 33. https://doi.org/10.3390/a13020033
Daga AP, Garibaldi L. GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms. 2020; 13(2):33. https://doi.org/10.3390/a13020033
Chicago/Turabian StyleDaga, Alessandro Paolo, and Luigi Garibaldi. 2020. "GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes" Algorithms 13, no. 2: 33. https://doi.org/10.3390/a13020033
APA StyleDaga, A. P., & Garibaldi, L. (2020). GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms, 13(2), 33. https://doi.org/10.3390/a13020033