Incremental FPT Delay
Abstract
:1. Introduction
1.1. Enumeration
1.2. Parameterized Complexity
1.3. Parameterized Enumeration
1.4. Related Work
1.5. Our Contribution
1.6. Outline
2. Preliminaries
2.1. Parameterized Complexity Theory
- A accepts x if and only if , and
- A has a runtime of ,
2.2. Enumeration
- is the set of instances (recognizable in polynomial time),
- is a computable function such that for all , is a finite set and if and only if ,
- , and
- there exists a polynomial p such that for all and we have .
- a --algorithm if and only if there exists a polynomial p such that for all , algorithm outputs in time .
- a -algorithm if and only if there exists a polynomial p such that for all , algorithm outputs with delay .
- an -algorithm if and only if there exists a polynomial p such that for all , algorithm outputs and its i-th delay is in (for every ).
- a -algorithm if and only if there exists a polynomial p such that for all , algorithm outputs i elements of in time (for every ).
- a -algorithm if and only if there exists a polynomial p such that for all , algorithm outputs in time .
2.3. Parameterized Enumeration
- is a parameterization (that is, a polynomial-time computable function), and
- is an EP.
- an -enumeration algorithm if there exists a computable function and a polynomial p such that for every instance , outputs in time at most ,
- a -algorithm if there exists a computable function and a polynomial p such that for every , outputs with delay of at most ,
- an -algorithm if there exists a computable function and a polynomial p such that for every , outputs and its i-th delay is at most , and
- an -algorithm if there exists a computable function and a polynomial p such that for every instance , outputs in time at most .
3. Interleaving Hierarchies of Parameterized Incremental Delay
- 3′.
- a -algorithm (for ) if there exists a computable function and a polynomial p such that for every , outputs i elements of in time (for every ).
- 3″.
- an -algorithm (for ) if there exists a computable function and a polynomial p such that for every , outputs and its i-th delay is at most .
4. Connecting with Classical Enumeration Complexity
- if there is a deterministic polynomial time algorithm that, given , can find some such that is true.
- if there is a deterministic polynomial time algorithm that can determine whether is true, given both x and y.
- if there exists a deterministic algorithm that, given , can find some such that is true and runs in time , where f is a computable function and p is a polynomial.
- - if there exists a deterministic algorithm that, given both x and y, can determine whether is true and runs in time , where f is a computable function and p is a polynomial.
- For each , either there exists a y with , or there is a z with , where are two special markers in Σ.
- Given , N can find either a y with or a z with in time , or state that such ones do not exist, where are polynomials and are computable functions.
Problem: | (-AnotherSolA), where |
Input: | , . |
Parameter: | . |
Task: | output y in , or answer . |
Problem: | (-)Enum-A, where |
Input: | . |
Parameter: | . |
Output: | output all y with . |
Algorithm 1: Algorithm showing -Enum-. |
- D is total by construction,
- as -Enum- is a PEP, there exists a polynomial q such that for every solution we have that , and
- finally, we need to show that can be verified in deterministic time for a computable function f and a polynomial p.
- Case :
- is true if and only if . This requires testing whether and . Both can be tested in polynomial time: , respectively, which follows from Definition 7 (4.).
- Case :
- is true if and only if . As -Enum-, there is a deterministic algorithm outputting in steps. Now, run for at most steps. Then, finishing within this steps-bound implies that is completely generated, and we merely check in time polynomial in . If did not halt within the steps-bound, we can deduce . Accordingly, follows and is not true.
- -
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. On Generating All Maximal Independent Sets. Inf. Process. Lett. 1988, 27, 119–123. [Google Scholar] [CrossRef]
- Avis, D.; Fukuda, K. Reverse Search for Enumeration. Discrete Appl. Math. 1996, 65, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Creignou, N.; Olive, F.; Schmidt, J. Enumerating All Solutions of a Boolean CSP by Non-decreasing Weight. In Theory and Applications of Satisfiability Testing, Proceedings of the 14th International Conference, SAT 2011, Ann Arbor, MI, USA, 19–22 June 2011; Sakallah, K.A., Simon, L., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011; Volume 6695, pp. 120–133. [Google Scholar] [CrossRef]
- Strozecki, Y. On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation. Theory Comput. Syst. 2013, 53, 532–568. [Google Scholar] [CrossRef]
- Creignou, N.; Hébrard, J.J. On generating all solutions of generalized satisfiability problems. Theor. Inform. Appl. 1997, 31, 499–511. [Google Scholar] [CrossRef]
- Durand, A.; Strozecki, Y. Enumeration Complexity of Logical Query Problems with Second-order Variables. In Computer Science Logic, Proceedings of the 25th International Workshop/20th Annual Conference of the EACSL, CSL 2011, Bergen, Norway, 12–15 September 2011; Bezem, M., Ed.; Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2011; Volume 12, pp. 189–202. [Google Scholar] [CrossRef]
- Read, R.C.; Tarjan, R.E. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks 1975, 5, 237–252. [Google Scholar] [CrossRef]
- Khachiyan, L.G.; Boros, E.; Elbassioni, K.M.; Gurvich, V.; Makino, K. On the Complexity of Some Enumeration Problems for Matroids. SIAM J. Discret. Math. 2005, 19, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Eiter, T.; Gottlob, G.; Makino, K. New Results on Monotone Dualization and Generating Hypergraph Transversals. SIAM J. Comput. 2003, 32, 514–537. [Google Scholar] [CrossRef] [Green Version]
- Fredman, M.L.; Khachiyan, L. On the Complexity of Dualization of Monotone Disjunctive Normal Forms. J. Algorithms 1996, 21, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Carmeli, N.; Kenig, B.; Kimelfeld, B. Efficiently Enumerating Minimal Triangulations. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2017), Chicago, IL, USA, 14–19 May 2017; Sallinger, E., den Bussche, J.V., Geerts, F., Eds.; ACM: New York, NY, USA, 2017; pp. 273–287. [Google Scholar] [CrossRef]
- Capelli, F.; Strozecki, Y. Incremental delay enumeration: Space and time. Discret. Appl. Math. 2019, 268, 179–190. [Google Scholar] [CrossRef]
- Downey, R.G.; Fellows, M.R. Fundamentals of Parameterized Complexity; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Downey, R.G.; Fellows, M.R. Parameterized Complexity; Springer: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Flum, J.; Grohe, M. Parameterized Complexity Theory; Texts in Theoretical Computer Science. An EATCS Series; Springer: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- Niedermeier, R. Invitation to Fixed-Parameter Algorithms; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Alber, J.; Fernau, H.; Niedermeier, R. Parameterized complexity: Exponential speed-up for planar graph problems. J. Algorithms 2004, 52, 26–56. [Google Scholar] [CrossRef]
- Creignou, N.; Meier, A.; Müller, J.; Schmidt, J.; Vollmer, H. Paradigms for Parameterized Enumeration. In Mathematical Foundations of Computer Science 2013, Proceedings of the 38th International Symposium, MFCS 2013, Klosterneuburg, Austria, 26–30 August 2013; Chatterjee, K., Sgall, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2013; Volume 8087, pp. 290–301. [Google Scholar] [CrossRef] [Green Version]
- Creignou, N.; Meier, A.; Müller, J.; Schmidt, J.; Vollmer, H. Paradigms for Parameterized Enumeration. Theory Comput. Syst. 2017, 60, 737–758. [Google Scholar] [CrossRef] [Green Version]
- Creignou, N.; Ktari, R.; Meier, A.; Müller, J.; Olive, F.; Vollmer, H. Parameterized Enumeration for Modification Problems. In Language and Automata Theory and Applications, Proceedings of the 9th International Conference, LATA 2015, Nice, France, 2–6 March 2015; Dediu, A., Formenti, E., Martín-Vide, C., Truthe, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2015; Volume 8977, pp. 524–536. [Google Scholar] [CrossRef]
- Creignou, N.; Ktari, R.; Meier, A.; Müller, J.; Olive, F.; Vollmer, H. Parameterised Enumeration for Modification Problems. Algorithms 2019, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Meier, A.; Reinbold, C. Enumeration Complexity of Poor Man’s Propositional Dependence Logic. In Foundations of Information and Knowledge Systems, Proceedings of the 10thInternational Symposium, FoIKS 2018, Budapest, Hungary, 14–18 May 2018; Ferrarotti, F., Woltran, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2018. [Google Scholar]
- Megiddo, N.; Papadimitriou, C.H. On Total Functions, Existence Theorems and Computational Complexity. Theor. Comput. Sci. 1991, 81, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, P.W.; Papadimitriou, C.H. Towards a Unified Complexity Theory of Total Functions. Electron. Colloq. Comput. Complex. (ECCC) 2017, 24, 56. [Google Scholar] [CrossRef]
- Chauhan, A.; Rao, B.V.R. Parameterized Analogues of Probabilistic Computation. In Algorithms and Discrete Applied Mathematics, Proceedings of the First International Conference, CALDAM 2015, Kanpur, India, 8–10 February 2015; Ganguly, S., Krishnamurti, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2015; Volume 8959, pp. 181–192. [Google Scholar] [CrossRef]
- Fichte, J.K.; Hecher, M.; Schindler, I. Default Logic and Bounded Treewidth. In Language and Automata Theory and Applications Proceedings of the 12th International Conference, LATA 2018, Ramat Gan, Israel, 9–11 April 2018; Klein, S.T., Martín-Vide, C., Shapira, D., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2018; Volume 10792, pp. 130–142. [Google Scholar] [CrossRef] [Green Version]
- Bläsius, T.; Friedrich, T.; Meeks, K.; Schirneck, M. On the Enumeration of Minimal Hitting Sets in Lexicographical Order. arXiv 2018, arXiv:1805.01310. [Google Scholar]
- Pichler, R.; Rümmele, S.; Woltran, S. Counting and Enumeration Problems with Bounded Treewidth. In Logic for Programming, Artificial Intelligence, and Reasoning, Proceedings of the 16th International Conference, LPAR-16, Dakar, Senegal, 25 April–1 May 2010; Clarke, E.M., Voronkov, A., Eds.; Revised Selected Papers; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2010; Volume 6355, pp. 387–404. [Google Scholar] [CrossRef]
- Mary, A.; Strozecki, Y. Efficient Enumeration of Solutions Produced by Closure Operations. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Orléans, France, 17–20 February 2016; Ollinger, N., Vollmer, H., Eds.; Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2016; Volume 47, pp. 52:1–52:13. [Google Scholar] [CrossRef]
- Flum, J.; Grohe, M. The Parameterized Complexity of Counting Problems. SIAM J. Comput. 2004, 33, 892–922. [Google Scholar] [CrossRef] [Green Version]
- McCartin, C. Parameterized counting problems. Ann. Pure Appl. Log. 2006, 138, 147–182. [Google Scholar] [CrossRef]
- Roth, M.; Wellnitz, P. Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), Salt Lake City, UT, USA, 5–8 January 2020; Chawla, S., Ed.; SIAM: Philadelphia, PA, USA, 2020; pp. 2161–2180. [Google Scholar] [CrossRef]
- Curticapean, R.; Dell, H.; Roth, M. Counting Edge-injective Homomorphisms and Matchings on Restricted Graph Classes. Theory Comput. Syst. 2019, 63, 987–1026. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.; Schmitt, J. Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness. In Proceedings of the 13th International Symposium on Parameterized and Exact Computation (IPEC 2018), Helsinki, Finland, 20–24 August 2018; Paul, C., Pilipczuk, M., Eds.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Wadern, Germany, 2018; Volume 115, pp. 24:1–24:14. [Google Scholar] [CrossRef]
- Dörfler, J.; Roth, M.; Schmitt, J.; Wellnitz, P. Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness. In Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), Aachen, Germany, 26–30 August 2019; Rossmanith, P., Heggernes, P., Katoen, J., Eds.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Wadern, Germany, 2019; Volume 138, pp. 26:1–26:14. [Google Scholar] [CrossRef]
- Curticapean, R. The Simple, Little and Slow Things Count: On Parameterized Counting Complexity. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2015. [Google Scholar]
- Talbot, J.M.; Welsh, D.J.A. Complexity and Cryptography—An Introduction; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Creignou, N.; Kröll, M.; Pichler, R.; Skritek, S.; Vollmer, H. On the Complexity of Hard Enumeration Problems. In Language and Automata Theory and Application, Proceedings of the 11th International Conference, LATA 2017, Umeå, Sweden, 6–9 March 2017; Drewes, F., Martín-Vide, C., Truthe, B., Eds.; Springer: Cham, Switzerland, 2017; Volume 10168, pp. 183–195. [Google Scholar] [CrossRef] [Green Version]
- Pippenger, N. Theories of Computability; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Schmidt, J. Enumeration: Algorithms and Complexity. Master’s Thesis, Leibniz Universität Hannover, Hanover, Germany, 2009. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.8008&rep=rep1&type=pdf (accessed on 14 May 2020).
- Fomin, F.V.; Kratsch, D. Exact Exponential Algorithms; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Hartmanis, J.; Stearns, R.E. On the computational complexity of algorithms. Trans. Am. Math. Soc. 1965, 117, 285–306. [Google Scholar] [CrossRef]
- Bellare, M.; Goldwasser, S. The Complexity of Decision Versus Search. SIAM J. Comput. 1994, 23, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. How Easy is Local Search? J. Comput. Syst. Sci. 1988, 37, 79–100. [Google Scholar] [CrossRef] [Green Version]
Class | Machine | Runtime | Constraints |
---|---|---|---|
det. | find y such that | ||
nond. | guess y such that | ||
nond. | guess y such that , A is total | ||
det. | find y such that | ||
- | nond. | guess y such that | |
- | nond. | guess y such that , A is total | |
-- | nond. | either find y with or z with |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, A. Incremental FPT Delay. Algorithms 2020, 13, 122. https://doi.org/10.3390/a13050122
Meier A. Incremental FPT Delay. Algorithms. 2020; 13(5):122. https://doi.org/10.3390/a13050122
Chicago/Turabian StyleMeier, Arne. 2020. "Incremental FPT Delay" Algorithms 13, no. 5: 122. https://doi.org/10.3390/a13050122
APA StyleMeier, A. (2020). Incremental FPT Delay. Algorithms, 13(5), 122. https://doi.org/10.3390/a13050122