A Jacobi–Davidson Method for Large Scale Canonical Correlation Analysis
Abstract
:1. Introduction
2. Preliminaries
3. The Main Algorithm
3.1. Subspace Extraction
3.2. Correction Equation
- (1)
- At step 2, A- and B-orthogonality procedures are applied to make sure and .
- (2)
- At step 7, in most cases, the correct equation is not necessity to solve exactly. Some steps of iterative methods for symmetric linear systems, such as linear conjugate gradient method (CG) [34] or the minimum residual method (MINRES) [35], are sufficient. Usually, more steps in solving the correction equation lead to fewer outer iterations. This will be shown in numerical examples.
- (3)
- For the convergence test, we use the relative residual norms
- (4)
- At step 5, LAPACK’s routine xGESVD can be used to solve the singular value problem of because of its small size, where takes the following form:
Algorithm 1 Jacobi–Davidson method for canonical correlation analysis (JDCCA) |
Input: Initial vectors , , , and . Output: Converged canonical weight vectors and for .
|
3.3. Convergence
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
References
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harold, H. Relations between two sets of variates. Biometrika 1936, 28, 321–377. [Google Scholar]
- Wang, L.; Zhang, L.H.; Bai, Z.; Li, R.C. Orthogonal canonical correlation analysis and applications. Opt. Methods Softw. 2020, 35, 787–807. [Google Scholar] [CrossRef]
- Uurtio, V.; Monteiro, J.M.; Kandola, J.; Shawe-Taylor, J.; Fernandez-Reyes, D.; Rousu, J. A tutorial on canonical correlation methods. ACM Comput. Surv. 2017, 50, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.H.; Wang, L.; Bai, Z.; Li, R.C. A self-consistent-field iteration for orthogonal CCA. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1–15. [Google Scholar] [CrossRef]
- Fukunaga, K. Introduction to Statistical Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- González, I.; Déjean, S.; Martin, P.G.P.; Gonçalves, O.; Besse, P.; Baccini, A. Highlighting relationships between heterogeneous biological data through graphical displays based on regularized canonical correlation analysis. J. Biol. Syst. 2009, 17, 173–199. [Google Scholar] [CrossRef]
- Leurgans, S.E.; Moyeed, R.A.; Silverman, B.W. Canonical correlation analysis when the data are curves. J. R. Stat. Soc. B. Stat. Methodol. 1993, 55, 725–740. [Google Scholar] [CrossRef]
- Raul, C.C.; Lee, M.L.T. Fast regularized canonical correlation analysis. Comput. Stat. Data Anal. 2014, 70, 88–100. [Google Scholar]
- Vinod, H.D. Canonical ridge and econometrics of joint production. J. Econ. 1976, 4, 147–166. [Google Scholar] [CrossRef]
- González, I.; Déjean, S.; Martin, P.G.P.; Baccini, A. CCA: An R package to extend canonical correlation analysis. J. Stat. Softw. 2008, 23, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z. Canonical Correlation Analysis and Network Data Modeling: Statistical and Computational Properties. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2017. [Google Scholar]
- Golub, G.; Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 1965, 2, 205–224. [Google Scholar] [CrossRef]
- Jia, Z.; Niu, D. An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 2003, 25, 246–265. [Google Scholar] [CrossRef]
- Hochstenbach, M.E. A Jacobi—Davidson type SVD method. SIAM J. Sci. Comput. 2001, 23, 606–628. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, Z.; Zhou, A. Accelerating large partial EVD/SVD calculations by filtered block Davidson methods. Sci. China Math. 2016, 59, 1635–1662. [Google Scholar] [CrossRef]
- Allen-Zhu, Z.; Li, Y. Doubly accelerated methods for faster CCA and generalized eigendecomposition. In Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 98–106. [Google Scholar]
- Saad, Y. Numerical Methods for Large Eigenvalue Problems: Revised Edition; SIAM: Philadelphia, PA, USA, 2011. [Google Scholar]
- Stewart, G.W. Matrix Algorithms Volume II: Eigensystems; SIAM: Philadelphia, PA, USA, 2001; Volume 2. [Google Scholar]
- Sleijpen, G.L.G.; Van der Vorst, H.A. A Jacobi—Davidson iteration method for linear eigenvalue problems. SIAM Rev. 2000, 42, 267–293. [Google Scholar] [CrossRef]
- Hochstenbach, M.E. A Jacobi—Davidson type method for the generalized singular value problem. Linear Algebra Appl. 2009, 431, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Betcke, T.; Voss, H. A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 2004, 20, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Hochstenbach, M.E.; Plestenjak, B. A Jacobi—Davidson type method for a right definite two-parameter eigenvalue problem. SIAM J. Matrix Anal. Appl. 2002, 24, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Arbenz, P.; Hochstenbach, M.E. A Jacobi—Davidson method for solving complex symmetric eigenvalue problems. SIAM J. Sci. Comput. 2004, 25, 1655–1673. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Roman, J.E. A polynomial Jacobi—Davidson solver with support for non-monomial bases and deflation. BIT Numer. Math. 2019, 60, 295–318. [Google Scholar] [CrossRef]
- Hochstenbach, M.E. A Jacobi—Davidson type method for the product eigenvalue problem. J. Comput. Appl. Math. 2008, 212, 46–62. [Google Scholar] [CrossRef]
- Hochstenbach, M.E.; Muhič, A.; Plestenjak, B. Jacobi—Davidson methods for polynomial two-parameter eigenvalue problems. J. Comput. Appl. Math. 2015, 288, 251–263. [Google Scholar] [CrossRef]
- Meerbergen, K.; Schröder, C.; Voss, H. A Jacobi–Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations. Numer. Linear Algebra Appl. 2013, 20, 852–868. [Google Scholar] [CrossRef]
- Rakhuba, M.V.; Oseledets, I.V. Jacobi–Davidson method on low-rank matrix manifolds. SIAM J. Sci. Comput. 2018, 40, A1149–A1170. [Google Scholar] [CrossRef]
- Stewart, G.W.; Sun, J.G. Matrix Perturbation Theory; Academic Press: Boston, FL, USA, 1990. [Google Scholar]
- Teng, Z.; Wang, X. Majorization bounds for SVD. Jpn. J. Ind. Appl. Math. 2018, 35, 1163–1172. [Google Scholar] [CrossRef]
- Bai, Z.; Li, R.C. Minimization principles and computation for the generalized linear response eigenvalue problem. BIT Numer. Math. 2014, 54, 31–54. [Google Scholar] [CrossRef]
- Teng, Z.; Li, R.C. Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem. J. Comput. Appl. Math. 2013, 247, 17–33. [Google Scholar] [CrossRef]
- Demmel, J.W. Applied Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]
- Teng, Z.; Zhou, Y.; Li, R.C. A block Chebyshev-Davidson method for linear response eigenvalue problems. Adv. Comput. Math. 2016, 42, 1103–1128. [Google Scholar] [CrossRef]
- Zhou, Y.; Saad, Y. A Chebyshev–Davidson algorithm for large symmetric eigenproblems. SIAM J. Matrix Anal. Appl. 2007, 29, 954–971. [Google Scholar] [CrossRef] [Green Version]
- Sleijpen, G.L.G.; Van der Vorst, H.A. The Jacobi–Davidson method for eigenvalue problems as an accelerated inexact Newton scheme. In Proceedings of the IMACS Conference, Blagoevgrad, Bulgaria, 17–20 June 1995. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Choi, S. Two-dimensional canonical correlation analysis. IEEE Signal Process. Lett. 2007, 14, 735–738. [Google Scholar] [CrossRef]
- Fokkema, D.R.; Sleijpen, G.L.G.; Van der Vorst, H.A. Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 1998, 20, 94–125. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.; Seghouane, A.K.; Palaniswami, M. Algorithms for two dimensional multi set canonical correlation analysis. Pattern Recognit. Lett. 2018, 111, 101–108. [Google Scholar] [CrossRef]
Problems | ORL | FERET | Yale |
---|---|---|---|
m | 10,304 | 6400 | 10,000 |
n | 10,304 | 6400 | 10,000 |
d | 200 | 600 | 75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Z.; Zhang, X. A Jacobi–Davidson Method for Large Scale Canonical Correlation Analysis. Algorithms 2020, 13, 229. https://doi.org/10.3390/a13090229
Teng Z, Zhang X. A Jacobi–Davidson Method for Large Scale Canonical Correlation Analysis. Algorithms. 2020; 13(9):229. https://doi.org/10.3390/a13090229
Chicago/Turabian StyleTeng, Zhongming, and Xiaowei Zhang. 2020. "A Jacobi–Davidson Method for Large Scale Canonical Correlation Analysis" Algorithms 13, no. 9: 229. https://doi.org/10.3390/a13090229
APA StyleTeng, Z., & Zhang, X. (2020). A Jacobi–Davidson Method for Large Scale Canonical Correlation Analysis. Algorithms, 13(9), 229. https://doi.org/10.3390/a13090229