A Branch-and-Bound Algorithm for Polymatrix Games ϵ-Proper Nash Equilibria Computation
Abstract
:1. Introduction
2. Polymatrix Games
3. Set of -Proper Equilibria
- -
- if and , then ;
- -
- if , then implies that and , thus .
4. Computation of Proper Equilibria
4.1. Mixed 0–1 Quadratic Formulations
4.2. Mixed 0–1 Linear Formulation
4.3. Analytical Computation
5. Branch-and-Bound Algorithm for -Proper Equilibrium Computation
5.1. The 0–1 Mixed Linear Master Program
5.2. The -Proper Branch-and-Bound Algorithm
- -
- P; Master linear program defined by the relaxation of the 0–1 conditions in
- -
- Sub-program defined by a secondary linear program where the U and V variables in P are fixed.
- -
- , X; ’s real decision variables.
- -
- ; ’s binary decision variables.
- -
- ; List of Nash equilibria visited.
- -
- ; List of -proper Nash equilibria obtained.
- -
- ; Depth level reached in the principal tree.
- -
- ; Principal tree root node.
- -
- C; Current node.
- -
- , ; Real decision variables on the strategy of player i
- -
- ; Binary decision variables on the strategy of player i
- -
- ; Binary decision variables on the and strategies of player i
- -
- ; Best value of found.
- -
- If the program P is infeasible or the optimal objective is equal to 0; STOP.
- -
- Else;
- -
- If , Go to step 3.
- -
- Else, Let be the solution obtained;
- -
- If the optimal objective of P is less than , STOP.
- -
- Else, if the optimal objective of P is ≥,
- -
- Set or selected to 1 in P and Go to step 2.
- -
- Set or selected to 0 in P and Go to step 2.
- -
- If the program Q is infeasible or the optimal objective is equal to 0; STOP.
- -
- Else, if the optimal objective of is less than , STOP.
- -
- If the optimal objective of is , Update = , Add to E and X to . Go to step 4.
6. Experimental Results
7. Conclusions
Funding
Conflicts of Interest
References
- Nash, J.F. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [Green Version]
- Avis, D.; Fukuda, K. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 1992, 8, 295–313. [Google Scholar] [CrossRef]
- Audet, C.; Hansen, P.; Jaumard, B.; Savard, G. Enumeration of all extreme equilibrium strategies of bimatrix games. Siam J. Sci. Comput. 2001, 23, 323–338. [Google Scholar] [CrossRef]
- Audet, C.; Belhaiza, S.; Hansen, P. Enumeration of all Extreme Equilibria in Game Theory: Bimatrix and Polymatrix Games. J. Optim. Theory Appl. 2006, 129, 349–372. [Google Scholar] [CrossRef]
- Daskalakis, C.; Goldberg, P.; Papadimitriou, C. The complexity of computing a Nash equilibrium. Siam J. Comput. 2009, 39, 195–259. [Google Scholar] [CrossRef]
- Hazan, E.; Krauthgamer, R. How hard is it to approximate the best Nash equilibrium? Siam J. Comput. 2011, 40, 79–91. [Google Scholar] [CrossRef]
- Etessami, K.; Yannakakis, M. On the complexity of Nash equilibria and other fixed points. Siam J. Comput. 2010, 39, 2531–2597. [Google Scholar] [CrossRef] [Green Version]
- Yanovskaya, E.B. Equilibrium points in polymatrix games. Latv. Math. Collect. 1968, 8, 381–384. [Google Scholar]
- Howson, J.T. Equilibria of polymatrix games. Manag. Sci. 1972, 18, 312–318. [Google Scholar] [CrossRef]
- Eaves, C.B. Polymatrix games with joint constraints. Siam J. Appl. Math. 1973, 24, 418–423. [Google Scholar] [CrossRef]
- Howson, J.T.; Rosenthal, R.W. Bayesian equilibria of finite two-person games with incomplete information. Manag. Sci. 1974, 21, 313–315. [Google Scholar] [CrossRef]
- Quintas, L. A Note on Polymatrix Games. Int. J. Game Theory 1989, 18, 261–272. [Google Scholar] [CrossRef]
- Miller, D.A.; Zucker, S.W. Copositive-plus Lemke Algorithm Solves Polymatrix Games. Oper. Res. Lett. 1991, 10, 285–290. [Google Scholar] [CrossRef]
- Lemke, C.E. Bimatrix equilibrium points and mathematical programming. Manag. Sci. 1965, 11, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R. Computing Equilibria of N-Person Games. Siam J. Appl. Math. 1971, 21, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Lemke, C.E.; Howson, J.T. Equilibrium points of bimatrix games. Siam J. Appl. Math. 1964, 12, 413–423. [Google Scholar] [CrossRef]
- Govindan, S.; Wilson, R. Computing Nash equilibria by iterated polymatrix approximation. J. Econ. Dyn. Control 2004, 28, 1229–1241. [Google Scholar] [CrossRef]
- Strekalovskii, A.S.; Enkhbat, R. Polymatrix games and Optimization Problems. Autom. Remote Control 2014, 75, 632–645. [Google Scholar] [CrossRef]
- Papadimitriou, C.H.; Roughgarden, T. Computing Correlated Equilibria in Multi-Player Games. J. ACM 2008, 55, 1–29. [Google Scholar] [CrossRef]
- Belhaiza, S. Computing Perfect Nash Equilibria for Polymatrix Games. Game Theory 2014, 2014, 937070. [Google Scholar] [CrossRef] [Green Version]
- Myerson, R.B. Refinements of the Nash equilibrium concept. Int. J. Game Theory 1978, 7, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Belhaiza, S.; Audet, C.; Hansen, P. On Proper Refinement of Bimatrix Games Nash Equilibria. Automatica 2012, 48, 297–303. [Google Scholar] [CrossRef]
- Belhaiza, S.; Charrad, S.; M’Hallah, R. On the Performance of Managers and Controllers: A Polymatrix Game Approach for the Manager-Controller-Board of Directors’ Conflict. J. Optim. Theory Appl. 2018, 177, 584–602. [Google Scholar] [CrossRef]
- Borm, P.E.M.; Jansen, M.J.M.; Potters, J.A.M.; Tijs, S.H. On the structure of the set of perfect equilibria in bimatrix games. O-R Spektrum 1993, 15, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Audet, C.; Belhaiza, S.; Hansen, P. A new sequence form approach for the enumeration and refinement of all extreme Nash equilibria for extensive form games. Int. Game Theory Rev. 2009, 11, 437–451. [Google Scholar] [CrossRef]
- Avis, D.; Rosenberg, G.D.; Savani, R.; von Stengel, B. Enumeration of Nash equilibria for two-player games. Econ. Theory 2009, 42, 9–37. [Google Scholar] [CrossRef] [Green Version]
Eq | ||||||
---|---|---|---|---|---|---|
1 | 4 | 6 | 5 | |||
2 | 4 | 8 | 4 | |||
3 |
Eq. | Perfect | -Proper | ||
---|---|---|---|---|
1 | yes | yes | ||
2 | yes | no | 0 | |
3 | yes | yes |
) | ( | () | ||
Size | ne | Time | ne | Time | ne | Time | ne | Time | ne | Time |
---|---|---|---|---|---|---|---|---|---|---|
2 × 2 × 2 | 5.1 | 11.7 | 2.5 | 9.3 | 1.8 | 7.9 | 1.5 | 7.8 | 1.0 | 6.7 |
3 × 2 × 2 | 7.3 | 22.3 | 4.9 | 20.3 | 3.5 | 18.5 | 1.6 | 8.7 | 1.2 | 8.1 |
3 × 3 × 2 | 8.6 | 35.2 | 5.3 | 24.3 | 2.5 | 21.2 | 1.8 | 20.8 | 1.5 | 19.5 |
3 × 3 × 3 | 11.0 | 47.8 | 7.6 | 35.6 | 2.9 | 27.4 | 2.0 | 27.0 | 1.6 | 26.7 |
4 × 4 × 4 | 13.7 | 72.7 | 8.5 | 61.8 | 3.9 | 56.4 | 3.7 | 45.2 | 2.6 | 41.5 |
5 × 4 × 3 | 15.2 | 87.7 | 9.4 | 86.5 | 4.7 | 82.4 | 4.2 | 79.9 | 2.8 | 74.6 |
5 × 4 × 4 | 16.8 | 109.4 | 10.0 | 97.1 | 6.2 | 93.6 | 5.3 | 81.4 | 3.2 | 77.1 |
5 × 5 × 5 | 18.2 | 123.6 | 10.3 | 115.4 | 6.7 | 106.9 | 5.9 | 91.1 | 4.7 | 84.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhaiza, S. A Branch-and-Bound Algorithm for Polymatrix Games ϵ-Proper Nash Equilibria Computation. Algorithms 2021, 14, 365. https://doi.org/10.3390/a14120365
Belhaiza S. A Branch-and-Bound Algorithm for Polymatrix Games ϵ-Proper Nash Equilibria Computation. Algorithms. 2021; 14(12):365. https://doi.org/10.3390/a14120365
Chicago/Turabian StyleBelhaiza, Slim. 2021. "A Branch-and-Bound Algorithm for Polymatrix Games ϵ-Proper Nash Equilibria Computation" Algorithms 14, no. 12: 365. https://doi.org/10.3390/a14120365
APA StyleBelhaiza, S. (2021). A Branch-and-Bound Algorithm for Polymatrix Games ϵ-Proper Nash Equilibria Computation. Algorithms, 14(12), 365. https://doi.org/10.3390/a14120365