Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty
Abstract
:1. Introduction
2. Literature Review
2.1. The Location Routing Problem
2.2. Simheuristics and Fuzzy Logic for Vehicle Routing Problems under Uncertainty
3. Problem Description
- A reactive strategy with a cost , in which a vehicle must perform a round-trip to its assigned facility for a replenishment if the actual current-customer demand is higher than the vehicle’s current load.
- A preventive strategy with a cost , in which a vehicle must perform a detour to the facility before visiting the next customer. The decision about performing this detour depends on the type of demand of the next customer. If the demand is stochastic, the detour is carried out whenever the expected demand of the next customer is higher than the current capacity of the vehicle. Alternatively, if the demand is fuzzy, this decision depends on the comparison between the fuzzy values of both the demand of the next customer and the current capacity.
4. Solution Approach
Algorithm 1 Constructive heuristic (, , , , ) |
|
Algorithm 2 ILS-based Fuzzy Simheuristic (, , , , , , , , , ) |
|
5. Computational Experiments
- Traditional LRP instances consider that a single fixed size is available to assign to open depots. We extend this unit set to five alternative sizes, so that our algorithm selects one of them for each open depot. If is the size proposed by the original instance for each potential depot , and L is the set of available sizes, our approach’ alternative sizes are , where , , and r is the range of difference between available sizes. When , the case is the same as the traditional LRP. We consider that .
- Traditional LRP instances consider a fixed cost () incurred whenever a depot is open. We keep this parameter unaltered. Additionally, we introduce a variable cost () depending on and , namely: . This formula preserves in the same order as for each depot . Besides, it yields negative costs whenever , positive costs whenever , and a null cost when . Thus our results can be compared with those found in the LRP literature.
- An uncertain demand for each customer is considered. The demand of half of the customers is assumed to follow a log-normal probability distribution. If is the deterministic demand in the Akca’s set, then . In addition, three different values of variance are considered: low, medium and high, i.e., for , . These variability values are preserved identical to the ones used by Tordecilla et al. [13], in order to perform a suitable results comparison. The demand of the other half of the customers is considered to be fuzzy. In this case, can be estimated as low (DL), medium (DM) or high (DH). The demand in each of these fuzzy sets is represented by a triangular fuzzy number . If q is the vehicle total load capacity, all fuzzy demand values are expressed as a proportion of q in order to perform an appropriate comparison between the demand and the vehicle available capacity, i.e., . The membership function of these fuzzy sets are displayed in Figure 2.
Fuzzy Approach for the Demand and the Vehicle Available Capacity
- Simulate the actual demand of each customer employing a fuzzy simulation approach. Based on the works by Teodorović and Pavković [77], Sun et al. [59] and Sun [78], we follow the steps described below:
- (a)
- Generate a random demand between a lower bound and an upper bound. Since the objective is preserving the variability conditions similar to the stochastic demands, the lower and upper bounds are given by the expressions and , respectively.
- (b)
- Calculate the membership degree of this demand. Notice that .
- (c)
- Generate a random number .
- (d)
- Compare and . If , then assume the actual demand of the customer i as ; otherwise, repeat steps (a)–(d) until this condition is fulfilled.
- Calculate the vehicle available capacity subtracting from q the sum of the simulated demand of the first m customers visited in the current route, including the customer i. Whenever the route fails and the vehicle must perform a trip to the depot for a replenishment, the counting of m starts again from 1.
- Estimate the fuzzy demand and the fuzzy available capacity according to the categories previously defined: low, medium or high.
- Determine the membership function of the preference index using the reasoning rules defined in Table 2.
6. Results and Discussion
Managerial Insights
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salhi, S.; Rand, G.K. The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 1989, 39, 150–156. [Google Scholar] [CrossRef]
- Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007, 177, 649–672. [Google Scholar] [CrossRef] [Green Version]
- Prodhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res. 2014, 238, 1–17. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, Y.; Wang, X.; Zhou, F. Model and algorithm for bilevel multisized terminal location-routing problem for the last mile delivery. Int. Trans.Oper. Res. 2019, 26, 131–156. [Google Scholar] [CrossRef]
- Tordecilla-Madera, R.; Polo, A.; Muñoz, D.; González-Rodríguez, L. A robust design for a Colombian dairy cooperative’s milk storage and refrigeration logistics system using binary programming. Int. J. Prod. Econ. 2017, 183, 710–720. [Google Scholar] [CrossRef]
- Correia, I.; Melo, T. Multi-period capacitated facility location under delayed demand satisfaction. Eur. J. Oper. Res. 2016, 255, 729–746. [Google Scholar] [CrossRef] [Green Version]
- Hemmelmayr, V.; Smilowitz, K.; de la Torre, L. A periodic location routing problem for collaborative recycling. IISE Trans. 2017, 49, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Tunalıoğlu, R.; Koç, Ç.; Bektaş, T. A multiperiod location-routing problem arising in the collection of Olive Oil Mill Wastewater. J. Oper. Res. Soc. 2016, 67, 1012–1024. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.L.; Guimarans, D.; Juan, A.A. A simheuristic algorithm for the capacitated location routing problem with stochastic demands. J. Simul. 2019, 1–18. [Google Scholar] [CrossRef]
- Rabbani, M.; Heidari, R.; Yazdanparast, R. A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 2019, 272, 945–961. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, N.; Sun, Y.; Li, H. Location-routing optimization with split demand for customer self-pickup via data analysis and heuristics search. Asia-Pac. J. Oper. Res. 2019, 36, 1940013. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.; Zhang, W. A novel location-routing problem in electric vehicle transportation with stochastic demands. J. Clean. Prod. 2019, 221, 567–581. [Google Scholar] [CrossRef]
- Tordecilla, R.D.; Panadero, J.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Juan, A.A. A simheuristic algorithm for the location routing problem with facility sizing decisions and stochastic demands. In Proceedings of the 2020 Winter Simulation Conference, IEEE, Marriott, Orlando, FL, USA, 14–18 December 2020; pp. 1265–1275. [Google Scholar]
- Herazo-Padilla, N.; Montoya-Torres, J.R.; Nieto Isaza, S.; Alvarado-Valencia, J. Simulation-optimization approach for the stochastic location-routing problem. J. Simul. 2015, 9, 296–311. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Li, S.; Peng, J. Sustainable multi-depot emergency facilities location-routing problem with uncertain information. Appl. Math. Comput. 2018, 333, 506–520. [Google Scholar] [CrossRef]
- Corlu, C.G.; Panadero, J.; Onggo, S.; Juan, A.A. On the scarcity of observations when modelling random inputs and the quality of solutions to stochastic optimisation problems. In Proceedings of the 2020 Winter Simulation Conference, IEEE, Marriott, Orlando, FL, USA, 14–18 December 2020; pp. 2105–2113. [Google Scholar]
- Zhang, H.; Liu, F.; Ma, L.; Zhang, Z. A hybrid heuristic based on a particle swarm algorithm to solve the capacitated location-routing problem with fuzzy demands. IEEE Access 2020, 8, 153671–153691. [Google Scholar] [CrossRef]
- Mehrjerdi, Y.Z.; Nadizadeh, A. Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. Eur. J. Oper. Res. 2013, 229, 75–84. [Google Scholar] [CrossRef]
- Fazayeli, S.; Eydi, A.; Kamalabadi, I.N. Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Comput. Ind. Eng. 2018, 119, 233–246. [Google Scholar] [CrossRef]
- Nadizadeh, A.; Kafash, B. Fuzzy capacitated location-routing problem with simultaneous pickup and delivery demands. Transp. Lett. 2019, 11, 1–19. [Google Scholar] [CrossRef]
- Zarandi, M.H.F.; Hemmati, A.; Davari, S. The multi-depot capacitated location-routing problem with fuzzy travel times. Expert Syst. Appl. 2011, 38, 10075–10084. [Google Scholar] [CrossRef]
- Zarandi, M.H.F.; Hemmati, A.; Davari, S.; Turksen, I.B. Capacitated location-routing problem with time windows under uncertainty. Knowl. Based Syst. 2013, 37, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Ghezavati, V.; Morakabatchian, S. Application of a fuzzy service level constraint for solving a multi-objective location-routing problem for the industrial hazardous wastes. J. Intell. Fuzzy Syst. 2015, 28, 2003–2013. [Google Scholar] [CrossRef]
- Juan, A.A.; Kelton, W.D.; Currie, C.S.; Faulin, J. Simheuristics applications: Dealing with uncertainty in logistics, transportation, and other supply chain areas. In Proceedings of the 2018 Winter Simulation Conference, IEEE, Marriott, Orlando, FL, USA, 14–18 December 2018; pp. 3048–3059. [Google Scholar]
- Maranzana, F. On the location of supply points to minimize transport costs. J. Oper. Res. Soc. 1964, 15, 261–270. [Google Scholar] [CrossRef]
- Dai, Z.; Aqlan, F.; Gao, K.; Zhou, Y. A two-phase method for multi-echelon location-routing problems in supply chains. Expert Syst. Appl. 2019, 115, 618–634. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A biased-randomized metaheuristic for the capacitated location routing problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098. [Google Scholar] [CrossRef]
- Escobar, J.W.; Linfati, R.; Baldoquin, M.G.; Toth, P. A granular variable tabu neighborhood search for the capacitated location-routing problem. Transp. Res. Part B Methodol. 2014, 67, 344–356. [Google Scholar] [CrossRef]
- Ferdi, I.; Layeb, A. A GRASP algorithm based new heuristic for the capacitated location routing problem. J. Exp. Theor. Artif. Intell. 2018, 30, 369–387. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Faulin, J. Using horizontal cooperation concepts in integrated routing and facility-location decisions. Int. Trans. Oper. Res. 2019, 26, 551–576. [Google Scholar] [CrossRef]
- Hof, J.; Schneider, M.; Goeke, D. Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transp. Res. Part B Methodol. 2017, 97, 102–112. [Google Scholar] [CrossRef]
- Almouhanna, A.; Quintero-Araujo, C.L.; Panadero, J.; Juan, A.A.; Khosravi, B.; Ouelhadj, D. The location routing problem using electric vehicles with constrained distance. Comput. Oper. Res. 2020, 115, 104864. [Google Scholar] [CrossRef]
- Theeraviriya, C.; Sirirak, W.; Praseeratasang, N. Location and routing planning considering electric vehicles with restricted distance in agriculture. World Electr. Veh. J. 2020, 11, 61. [Google Scholar] [CrossRef]
- Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation centers in city logistics: A cooperative approach based on the location routing problem. Int. J. Ind. Eng. Comput. 2019, 10, 393–404. [Google Scholar] [CrossRef]
- Ukkusuri, S.V.; Yushimito, W.F. Location routing approach for the humanitarian prepositioning problem. Transp. Res. Record 2008, 2089, 18–25. [Google Scholar] [CrossRef]
- Lashine, S.H.; Fattouh, M.; Issa, A. Location/allocation and routing decisions in supply chain network design. J. Model. Manag. 2006, 1, 173–183. [Google Scholar] [CrossRef]
- Leng, L.; Zhao, Y.; Zhang, J.; Zhang, C. An effective approach for the multiobjective regional low-carbon location-routing problem. Int. J. Environ. Res. Public Health 2019, 16, 2064. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Leng, L.; Wang, S.; Li, G.; Zhao, Y. A hyperheuristic approach for location-routing problem of cold chain logistics considering fuel consumption. Comput. Intell. Neurosci. 2020, 2020, 8395754. [Google Scholar] [CrossRef]
- Rabbani, M.; Sadati, S.A.; Farrokhi-Asl, H. Incorporating location routing model and decision making techniques in industrial waste management: Application in the automotive industry. Comput. Ind. Eng. 2020, 148, 106692. [Google Scholar] [CrossRef]
- Ghaffari-Nasab, N.; Ahari, S.G.; Ghazanfari, M. A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Sci. Iran. 2013, 20, 919–930. [Google Scholar]
- Nadizadeh, A.; Nasab, H.H. Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm. Eur. J. Oper. Res. 2014, 238, 458–470. [Google Scholar] [CrossRef]
- Wei, M.; Yu, L.; Li, X. Credibilistic Location-Routing Model for Hazardous Materials Transportation. Int. J. Intell. Syst. 2015, 30, 23–39. [Google Scholar] [CrossRef]
- Faulin, J.; Gilibert, M.; Juan, A.A.; Vilajosana, X.; Ruiz, R. SR-1: A simulation-based algorithm for the capacitated vehicle routing problem. In Proceedings of the 2008 Winter Simulation Conference, IEEE, Miami, FL, USA, 7–10 December 2008; pp. 2708–2716. [Google Scholar]
- Juan, A.A.; Faulin, J.; Ruiz, R.; Barrios, B.; Gilibert, M.; Vilajosana, X. Using oriented random search to provide a set of alternative solutions to the capacitated vehicle routing problem. In Operations Research and Cyber-Infrastructure; Springer: Berlin, Germany, 2009; pp. 331–345. [Google Scholar]
- Oliva, D.; Copado, P.; Hinojosa, S.; Panadero, J.; Riera, D.; Juan, A.A. Fuzzy simheuristics: Solving optimization problems under stochastic and uncertainty scenarios. Mathematics 2021, 1, 00005. [Google Scholar]
- Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; de Armas, J.; Ramalhinho, H. Using simheuristics to promote horizontal collaboration in stochastic city logistics. Prog. Artif. Intell. 2017, 6, 275–284. [Google Scholar] [CrossRef]
- Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. A variable neighborhood search simheuristic for the multiperiod inventory routing problem with stochastic demands. Int. Trans. Oper. Res. 2020, 27, 314–335. [Google Scholar] [CrossRef]
- Gonzalez-Martin, S.; Juan, A.A.; Riera, D.; Elizondo, M.G.; Ramos, J.J. A simheuristic algorithm for solving the arc routing problem with stochastic demands. J. Simul. 2018, 12, 53–66. [Google Scholar] [CrossRef]
- Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. Combining variable neighborhood search with simulation for the inventory routing problem with stochastic demands and stock-outs. Comput. Ind. Eng. 2018, 123, 278–288. [Google Scholar] [CrossRef]
- Gruler, A.; Fikar, C.; Juan, A.A.; Hirsch, P.; Contreras-Bolton, C. Supporting multi-depot and stochastic waste collection management in clustered urban areas via simulation–optimization. J. Simul. 2017, 11, 11–19. [Google Scholar] [CrossRef]
- Uddin, M.; Huynh, N. Reliable routing of road-rail intermodal freight under uncertainty. Netw. Spat. Econ. 2019, 19, 929–952. [Google Scholar] [CrossRef]
- Hrušovskỳ, M.; Demir, E.; Jammernegg, W.; Van Woensel, T. Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty. Flex. Serv. Manuf. J. 2018, 30, 486–516. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, R.; Zhang, X.; Whiteing, A. A chance-constrained stochastic approach to intermodal container routing problems. PLoS ONE 2018, 13, e0192275. [Google Scholar] [CrossRef]
- Werners, B.; Drawe, M. Capacitated vehicle routing problem with fuzzy demand. In Fuzzy Sets Based Heuristics for Optimization; Springer: Berlin, Germany, 2003; pp. 317–335. [Google Scholar]
- Erbao, C.; Mingyong, L. A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. J. Comput. Appl. Math. 2009, 231, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Dai, X.X. Research on the vehicle routing problem with fuzzy demands. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 186, pp. 570–575. [Google Scholar]
- Sun, Y. Fuzzy approaches and simulation-based reliability modeling to solve a Road–Rail intermodal routing problem with soft delivery time windows when demand and capacity are uncertain. Int. J. Fuzzy Syst. 2020, 22, 2119–2148. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, B. Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Appl. Math. Comput. 2006, 176, 673–683. [Google Scholar] [CrossRef]
- Sun, Y.; Hrušovskỳ, M.; Zhang, C.; Lang, M. A time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestion. Complexity 2018, 2018, 8645793. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Singh, B.; Pandey, D. Fuzzy vehicle routing problem with uncertainty in service time. Int. J. Contemp. Math. Sci. 2010, 5, 497–507. [Google Scholar]
- Tang, J.; Pan, Z.; Fung, R.Y.; Lau, H. Vehicle routing problem with fuzzy time windows. Fuzzy Sets Syst. 2009, 160, 683–695. [Google Scholar] [CrossRef]
- López-Castro, L.F.; Montoya-Torres, J.R. Vehicle routing with fuzzy time windows using a genetic algorithm. In Proceedings of the 2011 Workshop On Computational Intelligence In Production And Logistics Systems, IEEE, Paris, France, 11–15 April 2011; pp. 1–8. [Google Scholar]
- Cao, E.; Lai, M. The open vehicle routing problem with fuzzy demands. Expert Syst. Appl. 2010, 37, 2405–2411. [Google Scholar] [CrossRef]
- Gonzalez-Neira, E.M.; Ferone, D.; Hatami, S.; Juan, A.A. A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 2017, 79, 23–36. [Google Scholar] [CrossRef]
- Zarandi, M.H.F.; Asl, A.A.S.; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev. 2020, 53, 501–593. [Google Scholar] [CrossRef]
- Ochoa, P.; Castillo, O.; Soria, J. High-Speed Interval Type-2 Fuzzy System for Dynamic Crossover Parameter Adaptation in Differential Evolution and Its Application to Controller Optimization. Int. J. Fuzzy Syst. 2019, 22, 414–427. [Google Scholar] [CrossRef]
- Bernal, E.; Castillo, O.; Soria, J.; Valdez, F. Generalized type-2 fuzzy logic in galactic swarm optimization: Design of an optimal ball and beam fuzzy controller. J. Intell. Fuzzy Syst. 2020, 39, 3545–3559. [Google Scholar] [CrossRef]
- Anter, A.M.; Gupta, D.; Castillo, O. A novel parameter estimation in dynamic model via fuzzy swarm intelligence and chaos theory for faults in wastewater treatment plant. Soft Comput. 2020, 24, 111–129. [Google Scholar] [CrossRef]
- Panadero, J.; Doering, J.; Kizys, R.; Juan, A.A.; Fito, A. A variable neighborhood search simheuristic for project portfolio selection under uncertainty. J. Heuristics 2020, 26, 353–375. [Google Scholar] [CrossRef] [Green Version]
- de Armas, J.; Juan, A.A.; Marquès, J.M.; Pedroso, J.P. Solving the deterministic and stochastic uncapacitated facility location problem: From a heuristic to a simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [Google Scholar] [CrossRef]
- Panadero, J.; Juan, A.A.; Bayliss, C.; Currie, C. Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem. Eur. J. Ind. Eng. 2020, 14, 485–516. [Google Scholar] [CrossRef]
- Ferone, D.; Gruler, A.; Festa, P.; Juan, A.A. Enhancing and extending the classical GRASP framework with biased randomisation and simulation. J. Oper. Res. Soc. 2019, 70, 1362–1375. [Google Scholar] [CrossRef]
- Ferrer, A.; Guimarans, D.; Ramalhinho, H.; Juan, A.A. A BRILS metaheuristic for non-smooth flow-shop problems with failure-risk costs. Expert Syst. Appl. 2016, 44, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Akca, Z.; Berger, R.; Ralphs, T. A branch-and-price algorithm for combined location and routing problems under capacity restrictions. In Operations Research and Cyber-Infrastructure; Springer: Boston, MA, USA, 2009; pp. 309–330. [Google Scholar]
- Barreto, S.; Ferreira, C.; Paixao, J.; Santos, B.S. Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 2007, 179, 968–977. [Google Scholar] [CrossRef]
- Belenguer, J.M.; Benavent, E.; Prins, C.; Prodhon, C.; Calvo, R.W. A branch-and-cut method for the capacitated location-routing problem. Comput. Oper. Res. 2011, 38, 931–941. [Google Scholar] [CrossRef]
- Teodorović, D.; Pavković, G. The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Sets Syst. 1996, 82, 307–317. [Google Scholar] [CrossRef]
- Sun, Y. A Fuzzy Multi-Objective Routing Model for Managing Hazardous Materials Door-to-Door Transportation in the Road-Rail Multimodal Network With Uncertain Demand and Improved Service Level. IEEE Access 2020, 8, 172808–172828. [Google Scholar] [CrossRef]
- Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Possibility Theory Versus Probab. Theory 1996, 32, 207–208. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Defuzzification within a multicriteria decision model. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2003, 11, 635–652. [Google Scholar] [CrossRef]
Reference | Type of Uncertainty | Uncertain Parameter | Mathematical Approach | Solving Approach | Objective Criterion |
---|---|---|---|---|---|
Quintero-Araujo et al. [9] | Stochastic | Demand | Mixed-integer linear programming | Simheuristic Iterated local search Monte Carlo simulation | Minimize cost |
Rabbani et al. [10] | Stochastic | Demand Number of people at risk | Mixed-integer non- linear programming | Simheuristic NSGA-II Monte Carlo Simulation | Minimize cost Minimize environmental risk |
Sun et al. [11] | Stochastic | Demand | Mixed-integer linear programming | Biogeography-based optimization Adaptive large neighborhood search | Minimize cost |
Zhang et al. [12] | Stochastic | Demand | — | Variable neighborhood search Particle swarm optimization | Minimize cost |
Tordecilla et al. [13] | Stochastic | Demand | — | Simheuristic Iterated local search Monte Carlo simulation | Minimize cost |
Herazo-Padilla et al. [14] | Stochastic | Transportation cost Travel speed | Mixed-integer linear programming | Ant colony optimization Discrete-event simulation | Minimize cost |
Zhang et al. [15] | Stochastic | Demand Travel distance Depot opening cost | Mixed-integer non- linear programming | Genetic algorithm Uncertain simulation | Minimize travel time Minimize emergency relief cost Minimize CO emissions |
Zhang et al. [17] | Fuzzy | Demand | A fuzzy chance constrained model | Particle swarm optimization Variable neighborhood search Stochastic simulation | Minimize cost Minimize additional travel distance due to route failures |
Mehrjerdi and Nadizadeh [18] | Fuzzy | Demand | A fuzzy chance constrained model | A greedy clustering method Ant colony system Stochastic simulation | Minimize cost |
Fazayeli et al. [19] | Fuzzy | Demand | Mixed-integer non- linear programming | Exact approach Genetic algorithm | Minimize cost |
Nadizadeh and Kafash [20] | Fuzzy | Demand | A fuzzy chance constrained model | A greedy clustering method Ant colony system Stochastic simulation | Minimize cost |
Zarandi et al. [21] | Fuzzy | Travel time | A fuzzy chance constrained model | Simulated annealing Fuzzy simulation | Minimize cost |
Zarandi et al. [22] | Fuzzy | Demand Travel time | A fuzzy chance constrained model | Simulated annealing Fuzzy simulation | Minimize cost Minimize additional travel distance due to route failures |
Ghezavati and Morakabatchian [23] | Fuzzy | Time windows | Mixed-integer linear programming | Exact approach | Minimize cost Minimize risks |
Ghaffari-Nasab et al. [40] | Fuzzy | Demand | A fuzzy chance constrained model | Simulated annealing Stochastic simulation | Minimize cost Minimize additional travel distance due to route failures |
Nadizadeh and Nasab [41] | Fuzzy | Demand | A fuzzy chance constrained model | A hybrid heuristic algorithm Ant colony system Stochastic simulation | Minimize cost Minimize additional travel distance due to route failures |
Wei et al. [42] | Fuzzy | Transportation cost Number of people that may be at risk | A fuzzy chance constrained model | Genetic algorithm Fuzzy simulation | Minimize cost Minimize risks |
Demand | Available Capacity | ||
---|---|---|---|
CL | CM | CH | |
DL | PM | PH | PVH |
DM | PL | PM | PH |
DH | PVL | PL | PM |
Instance | Best Deterministic Solution | Best Stochastic Solution [13] | Best Hybrid Solution | Best Fuzzy Solution | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC | RC | TC | OC | RC | FC | TC | SS | OC | RC | FC | TC | SS | OC | RC | FC | TC | SS | |
Low variability | ||||||||||||||||||
Cr30x5a-1 | 200.00 | 575.14 | 775.14 | 200.00 | 575.14 | 2.37 | 777.51 | 0% | 200.00 | 575.14 | 3.31 | 778.45 | 2% | 200.00 | 575.14 | 5.86 | 781.00 | 2% |
Cr30x5a-2 | 200.00 | 607.28 | 807.28 | 200.00 | 607.28 | 0.04 | 807.32 | 3% | 200.00 | 607.28 | 0.12 | 807.40 | 3% | 200.00 | 607.28 | 0.12 | 807.40 | 3% |
Cr30x5a-3 | 187.50 | 507.92 | 695.42 | 187.50 | 509.25 | 10.99 | 707.74 | 3% | 187.50 | 509.25 | 17.48 | 714.22 | 3% | 187.50 | 509.25 | 25.50 | 722.25 | 3% |
Cr30x5b-1 | 225.00 | 623.22 | 848.22 | 225.00 | 623.22 | 9.37 | 857.59 | 0% | 225.00 | 623.22 | 14.59 | 862.81 | 0% | 225.00 | 623.22 | 22.85 | 871.07 | 1% |
Cr30x5b-2 | 187.50 | 625.32 | 812.82 | 187.50 | 625.32 | 0.00 | 812.82 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% |
Cr30x5b-3 | 187.50 | 684.58 | 872.08 | 187.50 | 684.58 | 2.25 | 874.33 | 1% | 187.50 | 684.58 | 6.35 | 878.43 | 1% | 187.50 | 684.58 | 9.50 | 881.58 | 1% |
Cr40x5a-1 | 162.50 | 731.84 | 894.34 | 162.50 | 731.84 | 0.03 | 894.37 | 1% | 162.50 | 731.84 | 0.07 | 894.41 | 1% | 162.50 | 731.84 | 0.59 | 894.93 | 1% |
Cr40x5a-2 | 225.00 | 637.26 | 862.26 | 225.00 | 639.02 | 0.10 | 864.12 | 0% | 225.00 | 639.02 | 0.81 | 864.83 | 1% | 225.00 | 642.02 | 0.03 | 867.05 | 3% |
Cr40x5a-3 | 162.50 | 752.88 | 915.38 | 162.50 | 752.88 | 0.97 | 916.35 | 0% | 162.50 | 752.88 | 3.26 | 918.64 | 0% | 162.50 | 752.88 | 6.82 | 922.21 | 1% |
Cr40x5b-1 | 162.50 | 852.04 | 1014.54 | 162.50 | 852.04 | 6.90 | 1021.45 | 1% | 162.50 | 852.04 | 12.24 | 1026.78 | 1% | 162.50 | 852.04 | 20.79 | 1035.33 | 1% |
Cr40x5b-2 | 225.00 | 690.57 | 915.57 | 225.00 | 690.57 | 0.08 | 915.65 | 1% | 225.00 | 690.57 | 0.62 | 916.18 | 1% | 225.00 | 690.57 | 1.23 | 916.79 | 1% |
Cr40x5b-3 | 175.00 | 764.33 | 939.33 | 175.00 | 772.87 | 0.07 | 947.93 | 2% | 175.00 | 772.87 | 0.29 | 948.16 | 2% | 175.00 | 772.87 | 0.35 | 948.22 | 2% |
Average | 191.67 | 671.03 | 862.70 | 191.67 | 672.00 | 2.76 | 866.43 | 1.17% | 191.67 | 672.00 | 4.93 | 868.59 | 1.42% | 191.67 | 672.25 | 7.80 | 871.72 | 1.75% |
Medium variability | ||||||||||||||||||
Cr30x5a-1 | 200.00 | 575.14 | 775.14 | 200.00 | 575.14 | 7.63 | 782.77 | 2% | 200.00 | 575.14 | 9.67 | 784.81 | 2% | 200.00 | 575.14 | 12.91 | 788.05 | 2% |
Cr30x5a-2 | 200.00 | 607.28 | 807.28 | 200.00 | 607.28 | 0.46 | 807.74 | 3% | 200.00 | 607.28 | 1.94 | 809.22 | 3% | 200.00 | 607.28 | 1.43 | 808.71 | 3% |
Cr30x5a-3 | 187.50 | 507.92 | 695.42 | 187.50 | 509.25 | 18.50 | 715.25 | 3% | 187.50 | 509.25 | 24.10 | 720.85 | 3% | 187.50 | 509.25 | 29.73 | 726.48 | 3% |
Cr30x5b-1 | 225.00 | 623.22 | 848.22 | 225.00 | 623.22 | 14.63 | 862.85 | 0% | 225.00 | 623.22 | 18.32 | 866.53 | 3% | 225.00 | 623.22 | 24.23 | 872.45 | 3% |
Cr30x5b-2 | 187.50 | 625.32 | 812.82 | 187.50 | 625.32 | 0.00 | 812.82 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% |
Cr30x5b-3 | 187.50 | 684.58 | 872.08 | 187.50 | 684.58 | 10.21 | 882.28 | 0% | 187.50 | 684.58 | 12.79 | 884.87 | 1% | 187.50 | 684.58 | 12.88 | 884.96 | 1% |
Cr40x5a-1 | 162.50 | 731.84 | 894.34 | 162.50 | 739.24 | 0.01 | 901.75 | 3% | 162.50 | 739.24 | 0.01 | 901.75 | 3% | 162.50 | 739.24 | 0.00 | 901.74 | 3% |
Cr40x5a-2 | 225.00 | 637.26 | 862.26 | 225.00 | 643.52 | 3.07 | 871.59 | 1% | 225.00 | 642.02 | 0.24 | 867.26 | 3% | 225.00 | 642.02 | 0.57 | 867.59 | 3% |
Cr40x5a-3 | 162.50 | 752.88 | 915.38 | 162.50 | 752.88 | 4.46 | 919.85 | 1% | 162.50 | 752.88 | 8.57 | 923.95 | 1% | 162.50 | 752.88 | 11.83 | 927.22 | 1% |
Cr40x5b-1 | 162.50 | 852.04 | 1014.54 | 162.50 | 858.58 | 4.54 | 1025.62 | 2% | 162.50 | 858.58 | 8.01 | 1029.09 | 2% | 237.50 | 795.18 | 0.00 | 1032.68 | 4% |
Cr40x5b-2 | 225.00 | 690.57 | 915.57 | 225.00 | 690.57 | 2.06 | 917.63 | 1% | 225.00 | 690.57 | 3.77 | 919.33 | 0% | 225.00 | 690.57 | 5.80 | 921.37 | 1% |
Cr40x5b-3 | 175.00 | 764.33 | 939.33 | 175.00 | 772.87 | 1.42 | 949.29 | 2% | 175.00 | 772.87 | 2.53 | 950.40 | 2% | 175.00 | 772.87 | 2.96 | 950.82 | 2% |
Average | 191.67 | 671.03 | 862.70 | 191.67 | 673.54 | 5.58 | 870.79 | 1.67% | 191.67 | 673.41 | 7.50 | 872.57 | 2.08% | 197.92 | 668.13 | 8.53 | 874.57 | 2.33% |
High variability | ||||||||||||||||||
Cr30x5a-1 | 200.00 | 575.14 | 775.14 | 200.00 | 575.14 | 19.66 | 794.80 | 2% | 200.00 | 575.14 | 19.82 | 794.96 | 0% | 200.00 | 575.14 | 24.25 | 799.38 | 1% |
Cr30x5a-2 | 200.00 | 607.28 | 807.28 | 200.00 | 607.74 | 0.02 | 807.76 | 5% | 200.00 | 611.41 | 0.02 | 811.43 | 7% | 200.00 | 607.74 | 0.04 | 807.78 | 5% |
Cr30x5a-3 | 187.50 | 507.92 | 695.42 | 187.50 | 509.25 | 27.86 | 724.61 | 2% | 187.50 | 509.25 | 29.95 | 726.70 | 4% | 187.50 | 509.25 | 33.41 | 730.16 | 3% |
Cr30x5b-1 | 225.00 | 623.22 | 848.22 | 225.00 | 623.22 | 19.99 | 868.21 | 10% | 225.00 | 623.22 | 20.73 | 868.95 | 10% | 225.00 | 623.22 | 24.86 | 873.08 | 10% |
Cr30x5b-2 | 187.50 | 625.32 | 812.82 | 187.50 | 625.32 | 0.10 | 812.92 | 3% | 187.50 | 625.32 | 0.20 | 813.02 | 5% | 187.50 | 625.32 | 0.15 | 812.97 | 3% |
Cr30x5b-3 | 187.50 | 684.58 | 872.08 | 187.50 | 684.58 | 24.93 | 897.00 | 1% | 187.50 | 684.58 | 29.03 | 901.11 | 5% | 187.50 | 684.58 | 34.01 | 906.09 | 5% |
Cr40x5a-1 | 162.50 | 731.84 | 894.34 | 162.50 | 737.20 | 2.85 | 902.55 | 2% | 162.50 | 735.84 | 7.83 | 906.17 | 1% | 162.50 | 735.84 | 9.38 | 907.71 | 1% |
Cr40x5a-2 | 225.00 | 637.26 | 862.26 | 225.00 | 642.02 | 1.79 | 868.82 | 3% | 225.00 | 642.02 | 1.48 | 868.50 | 3% | 225.00 | 642.02 | 2.25 | 869.27 | 3% |
Cr40x5a-3 | 162.50 | 752.88 | 915.38 | 162.50 | 763.69 | 5.78 | 931.97 | 2% | 162.50 | 763.69 | 7.76 | 933.96 | 2% | 162.50 | 752.88 | 18.65 | 934.04 | 1% |
Cr40x5b-1 | 162.50 | 852.04 | 1014.54 | 237.50 | 786.00 | 4.65 | 1028.14 | 3% | 237.50 | 792.36 | 2.84 | 1032.70 | 4% | 237.50 | 786.00 | 8.47 | 1031.97 | 3% |
Cr40x5b-2 | 225.00 | 690.57 | 915.57 | 225.00 | 690.57 | 9.35 | 924.91 | 2% | 225.00 | 690.57 | 12.59 | 928.15 | 2% | 225.00 | 690.57 | 14.96 | 930.53 | 2% |
Cr40x5b-3 | 175.00 | 764.33 | 939.33 | 175.00 | 780.62 | 4.14 | 959.76 | 3% | 175.00 | 780.62 | 4.90 | 960.52 | 3% | 175.00 | 780.62 | 5.86 | 961.48 | 3% |
Average | 191.67 | 671.03 | 862.70 | 197.92 | 668.78 | 10.09 | 876.79 | 3.17% | 197.92 | 669.50 | 11.43 | 878.85 | 3.83% | 197.92 | 667.77 | 14.69 | 880.37 | 3.33% |
Instance | Best Nonflexible Hybrid Solution | Best Flexible Hybrid Solution | Gap TC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OC | RC | FC | TC | SS | OC | RC | FC | TC | SS | ||
Low variability | |||||||||||
Cr30x5a-1 | 200.00 | 619.51 | 3.45 | 822.96 | 1% | 200.00 | 575.14 | 3.31 | 778.45 | 2% | −5.41% |
Cr30x5a-2 | 200.00 | 626.01 | 0.04 | 826.05 | 1% | 200.00 | 607.28 | 0.12 | 807.40 | 3% | −2.26% |
Cr30x5a-3 | 200.00 | 507.99 | 17.56 | 725.55 | 2% | 187.50 | 509.25 | 17.48 | 714.22 | 3% | −1.56% |
Cr30x5b-1 | 200.00 | 682.97 | 0.32 | 883.29 | 2% | 225.00 | 623.22 | 14.59 | 862.81 | 0% | −2.32% |
Cr30x5b-2 | 200.00 | 625.32 | 0.00 | 825.32 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% | −1.51% |
Cr30x5b-3 | 200.00 | 684.58 | 5.95 | 890.53 | 1% | 187.50 | 684.58 | 6.35 | 878.43 | 1% | −1.36% |
Cr40x5a-1 | 200.00 | 733.47 | 3.22 | 936.70 | 0% | 162.50 | 731.84 | 0.07 | 894.41 | 1% | −4.51% |
Cr40x5a-2 | 200.00 | 691.47 | 11.15 | 902.63 | 1% | 225.00 | 639.02 | 0.81 | 864.83 | 1% | −4.19% |
Cr40x5a-3 | 200.00 | 748.64 | 9.88 | 958.52 | 1% | 162.50 | 752.88 | 3.26 | 918.64 | 0% | −4.16% |
Cr40x5b-1 | 200.00 | 858.58 | 1.94 | 1060.53 | 2% | 162.50 | 852.04 | 12.24 | 1026.78 | 1% | −3.18% |
Cr40x5b-2 | 300.00 | 690.57 | 0.65 | 991.22 | 2% | 225.00 | 690.57 | 0.62 | 916.18 | 1% | −7.57% |
Cr40x5b-3 | 200.00 | 780.62 | 0.07 | 980.69 | 2% | 175.00 | 772.87 | 0.29 | 948.16 | 2% | −3.32% |
Average | 208.33 | 687.48 | 4.52 | 900.33 | 1.42% | 191.67 | 672.00 | 4.93 | 868.59 | 1.42% | −3.45% |
Medium variability | |||||||||||
Cr30x5a-1 | 200.00 | 619.51 | 9.17 | 828.68 | 0% | 200.00 | 575.14 | 9.67 | 784.81 | 2% | −5.29% |
Cr30x5a-2 | 200.00 | 626.01 | 0.60 | 826.61 | 2% | 200.00 | 607.28 | 1.94 | 809.22 | 3% | −2.10% |
Cr30x5a-3 | 200.00 | 507.99 | 24.30 | 732.29 | 2% | 187.50 | 509.25 | 24.10 | 720.85 | 3% | −1.56% |
Cr30x5b-1 | 200.00 | 681.50 | 14.31 | 895.80 | 1% | 225.00 | 623.22 | 18.32 | 866.53 | 3% | −3.27% |
Cr30x5b-2 | 200.00 | 625.32 | 0.01 | 825.33 | 2% | 187.50 | 625.32 | 0.00 | 812.82 | 2% | −1.52% |
Cr30x5b-3 | 200.00 | 684.58 | 15.60 | 900.18 | 1% | 187.50 | 684.58 | 12.79 | 884.87 | 1% | −1.70% |
Cr40x5a-1 | 200.00 | 733.47 | 7.69 | 941.17 | 1% | 162.50 | 739.24 | 0.01 | 901.75 | 3% | −4.19% |
Cr40x5a-2 | 200.00 | 700.80 | 12.59 | 913.39 | 3% | 225.00 | 642.02 | 0.24 | 867.26 | 3% | −5.05% |
Cr40x5a-3 | 200.00 | 748.64 | 20.15 | 968.79 | 0% | 162.50 | 752.88 | 8.57 | 923.95 | 1% | −4.63% |
Cr40x5b-1 | 200.00 | 863.91 | 2.32 | 1066.23 | 3% | 162.50 | 858.58 | 8.01 | 1029.09 | 2% | −3.48% |
Cr40x5b-2 | 300.00 | 690.57 | 4.18 | 994.75 | 1% | 225.00 | 690.57 | 3.77 | 919.33 | 0% | −7.58% |
Cr40x5b-3 | 200.00 | 780.62 | 0.94 | 981.56 | 3% | 175.00 | 772.87 | 2.53 | 950.40 | 2% | −3.17% |
Average | 208.33 | 688.58 | 9.32 | 906.23 | 1.58% | 191.67 | 673.41 | 7.50 | 872.57 | 2.08% | −3.63% |
High variability | |||||||||||
Cr30x5a-1 | 200.00 | 619.51 | 20.69 | 840.20 | 0% | 200.00 | 575.14 | 19.82 | 794.96 | 0% | −5.38% |
Cr30x5a-2 | 200.00 | 621.45 | 5.66 | 827.12 | 3% | 200.00 | 611.41 | 0.02 | 811.43 | 7% | −1.90% |
Cr30x5a-3 | 200.00 | 507.99 | 30.16 | 738.15 | 4% | 187.50 | 509.25 | 29.95 | 726.70 | 4% | −1.55% |
Cr30x5b-1 | 200.00 | 681.50 | 18.85 | 900.35 | 0% | 225.00 | 623.22 | 20.73 | 868.95 | 10% | −3.49% |
Cr30x5b-2 | 200.00 | 625.32 | 0.14 | 825.46 | 5% | 187.50 | 625.32 | 0.20 | 813.02 | 5% | −1.51% |
Cr30x5b-3 | 200.00 | 684.58 | 30.23 | 914.81 | 1% | 187.50 | 684.58 | 29.03 | 901.11 | 5% | −1.50% |
Cr40x5a-1 | 200.00 | 737.94 | 5.78 | 943.73 | 2% | 162.50 | 735.84 | 7.83 | 906.17 | 1% | −3.98% |
Cr40x5a-2 | 200.00 | 700.80 | 15.98 | 916.78 | 3% | 225.00 | 642.02 | 1.48 | 868.50 | 3% | −5.27% |
Cr40x5a-3 | 200.00 | 748.64 | 32.89 | 981.54 | 0% | 162.50 | 763.69 | 7.76 | 933.96 | 2% | −4.85% |
Cr40x5b-1 | 200.00 | 858.58 | 22.53 | 1081.11 | 2% | 237.50 | 792.36 | 2.84 | 1032.70 | 4% | −4.48% |
Cr40x5b-2 | 300.00 | 693.03 | 12.66 | 1005.69 | 0% | 225.00 | 690.57 | 12.59 | 928.15 | 2% | −7.71% |
Cr40x5b-3 | 200.00 | 772.87 | 13.22 | 986.09 | 2% | 175.00 | 780.62 | 4.90 | 960.52 | 3% | −2.59% |
Average | 208.33 | 687.68 | 17.40 | 913.42 | 1.83% | 197.92 | 669.50 | 11.43 | 878.85 | 3.83% | −3.68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tordecilla, R.D.; Copado-Méndez, P.J.; Panadero, J.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Juan, A.A. Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty. Algorithms 2021, 14, 45. https://doi.org/10.3390/a14020045
Tordecilla RD, Copado-Méndez PJ, Panadero J, Quintero-Araujo CL, Montoya-Torres JR, Juan AA. Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty. Algorithms. 2021; 14(2):45. https://doi.org/10.3390/a14020045
Chicago/Turabian StyleTordecilla, Rafael D., Pedro J. Copado-Méndez, Javier Panadero, Carlos L. Quintero-Araujo, Jairo R. Montoya-Torres, and Angel A. Juan. 2021. "Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty" Algorithms 14, no. 2: 45. https://doi.org/10.3390/a14020045
APA StyleTordecilla, R. D., Copado-Méndez, P. J., Panadero, J., Quintero-Araujo, C. L., Montoya-Torres, J. R., & Juan, A. A. (2021). Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty. Algorithms, 14(2), 45. https://doi.org/10.3390/a14020045