A Two-Archive Many-Objective Optimization Algorithm Based on D-Domination and Decomposition
Abstract
:1. Introduction
- The method of D-dominance and adaptive strategy adjusting parameter are used to apply selection pressure on the population to identify better solutions. Meanwhile, the dominant and dominated regions can be adjusted by parameter , which means that D-dominance is more flexible when dealing with MaOPs;
- In this paper, two-archive strategy is used to balance the convergence and diversity of solutions, and a set of solutions with good convergence can be obtained.
2. Materials and Methods
2.1. D-Dominance Methods
2.2. Two Archives Strategy
2.3. Updating Strategy
2.4. The Proposed Algorithm
Algorithm 1: Proposed algorithm framework |
Input: |
MaOP(1). |
A set of weight vectors . |
K: number of subproblems. |
MaxGen: the maximal generation. |
Genetic operators and their associated parameters. |
Output: EPOP |
Initialization: unit direction vectors and population. |
while the stop requirements are not met do |
The new solution was obtained by genetic manipulation. for 1 to do |
for do |
Pick a solution at random from |
A new solution was obtained by genetic operation; |
; |
end |
end |
Find all solutions in . |
Determine the convergence archive . |
Defining the diversity archive : use Formula (8) to select solutions. |
. |
end while |
Algorithm 2: Determine the convergence archive CA |
Input: |
: a set of solutions. |
weight vectors . |
Output:: . |
Classifying solutions in CA according to Formulas (6) and (7). |
Using non-D-dominated sorting and Tchebycheff aggregate functions to preserve better convergent and distributed solutions. |
for, do |
if |
Evaluate the solution in by formula (9), keep only the best solution in each group. |
end if |
end |
3. Results and Discussion
3.1. Test Problem
3.2. Parameter Setting
3.3. Performance Indicator
3.4. Comparison and Analysis of Results
3.5. Value of Parameter β
3.6. Discusion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coello Coello, C.A.; Lamont, G.B.; Van Veldhuizen, D.A. (Eds.) Basic Concepts; Springer: Boston, MA, USA, 2007; pp. 1–60. [Google Scholar]
- Koessler, E.; Almomani, A. Hybrid particle swarm optimization and pattern search algorithm. Optim. Eng. 2021, 22, 1539–1555. [Google Scholar] [CrossRef]
- Cherki, I.; Chaker, A.; Djidar, Z.; Khalfallah, N.; Benzergua, F. A Sequential Hybridization of Genetic Algorithm and Particle Swarm Opti mization for the Optimal Reactive Power Flow. Sustainability 2019, 11, 3862. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.; Shareef, H.; Mohamed, A.; Khajehzadeh, M. Damping controller design for power system oscillations using hybrid ga-sqp. Int. Rev. Electr. Eng. 2011, 6, 888–896. [Google Scholar]
- Kaveh, A.; Ghazaan, M.; Abadi, A.A. An improved water strider algorithm for optimal design of skeletal structures. Period. Polytech. Civ. Eng. 2020, 64, 1284–1305. [Google Scholar] [CrossRef]
- Delice, A.Y.; Aydoan, E.K.; Özcan, U.; lkay, M.S. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. J. Intell. Manuf. 2017, 28, 23–36. [Google Scholar] [CrossRef]
- Mohammad, A.K.; Raihan, T.M.; Mahdiyeh, E. Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm. Civ. Eng. Environ. Syst. 2014, 31, 229–242. [Google Scholar]
- Khajehzadeh, M.; Taha, M.R.; Eslami, M. Opposition-based firefly algorithm for earth slope stability evaluation. China Ocean Eng. 2014, 28, 713–724. [Google Scholar] [CrossRef]
- Dong, N.; Dai, C. An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy. Knowl.-Based Syst. 2019, 163, 572–580. [Google Scholar] [CrossRef]
- Wu, M.; Li, K.; Kwong, S.; Zhang, Q. Evolutionary many-objective optimization based on adversarial decomposition. IEEE Trans. Cybern. 2020, 50, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lin, Q.; Tan, K.C.; Gong, M.; Coello, C.A.C. A fuzzy decomposition-based multi/many-objective evolutionary algorithm. IEEE Trans. Cybern. 2022, 52, 3495–3509. [Google Scholar] [CrossRef]
- Ji, H.; Dai, C. A simplified hypervolume-based evolutionary algorithm for many-objective optimization. Complexity 2020, 2020, 8353154. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Cheng, F.; Jin, Y. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 2018, 22, 609–622. [Google Scholar] [CrossRef]
- Sun, Y.; Yen, G.G.; Yi, Z. Igd indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2019, 23, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Bader, J.; Zitzler, E. Hype: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Shang, K.; Ishibuchi, H. A new hypervolume-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2020, 24, 839–852. [Google Scholar] [CrossRef]
- Liang, Z.; Luo, T.; Hu, K.; Ma, X.; Zhu, Z. An indicator-based many-objective evolutionary algorithm with boundary protection. IEEE Trans. Cybern. 2021, 51, 4553–4566. [Google Scholar] [CrossRef]
- While, L.; Hingston, P.; Barone, L.; Huband, S. A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 2006, 10, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Menchaca-Mendez, A.; Coello, C.A.C. A new selection mechanism based on hypervolume and its locality property. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 924–931. [Google Scholar]
- Tian, Y.; Cheng, R.; Zhang, X.; Su, Y.; Jin, Y. A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 2019, 23, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, M.; Liu, X.; Zheng, J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2013, 17, 721–736. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Y.; Li, M.; Chen, Z. A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 2017, 21, 131–152. [Google Scholar] [CrossRef]
- Seada, H.; Abouhawwash, M.; Deb, K. Multiphase balance of diversity and convergence in multiobjective optimization. IEEE Trans. Evol. Comput. 2019, 23, 503–513. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Y.; Yang, X.; Huang, H. A many-objective evolutionary algorithm with pareto-adaptive reference points. IEEE Trans. Evol. Comput. 2020, 24, 99–113. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. [Google Scholar] [CrossRef]
- Gu, F.; Cheung, Y.-M. Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans. Evol. Comput. 2018, 22, 211–225. [Google Scholar] [CrossRef]
- Liu, H.-L.; Chen, L.; Zhang, Q.; Deb, K. Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 433–448. [Google Scholar] [CrossRef]
- Chen, H.; Tian, Y.; Pedrycz, W.; Wu, G.; Wang, R.; Wang, L. Hyperplane assisted evolutionary algorithm for many-objective optimization problems. IEEE Trans. Cybern. 2020, 50, 3367–3380. [Google Scholar] [CrossRef]
- Yi, J.; Bai, J.; He, H.; Peng, J.; Tang, D. ar-moea: A novel preference-based dominance relation for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 2019, 23, 788–802. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Tan, K.C.; Cheung, Y.; Wang, Y. Evolutionary many-objective algorithm using decomposition-based dominance relationship. IEEE Trans. Cybern. 2019, 49, 4129–4139. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective opti-mization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
- Cheng, R.; Li, M.; Tian, Y.; Xiang, X.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X. Benchmark functions for cec’2018 competition on many-objective optimization. Complex Intell. Syst. 2017, 3, 1–22. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. (With Special Reference to the Biological Sciences.); McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1960; pp. 207–208. [Google Scholar]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
Problems | Two Arch-D | NSGAIII | MOEA/DD | KnEA | RVEA | hpaEA | VaEA | NSGAIISDR |
---|---|---|---|---|---|---|---|---|
MaF1-5 | 1.6189 × 10−1 8.91 × 10−2 | 2.0558 × 10−1 (6.77 × 10−³) = | 2.9579 × 10−1 (4.68 × 10−³) − | 1.7136 × 10−1 (1.91 × 10−³) = | 2.8832 × 10−1 (4.10 × 10−2) − | 1.6675 × 10−1 (7.86 × 10−4) = | 1.6959 × 10−1 (6.82 × 10−4) = | 1.6728 × 10−1 (1.48 × 10−³) − |
MaF2-5 | 1.0182 × 10−1 2.78 × 10−³ | 1.3232 × 10−1 (2.26 × 10−³) = | 1.3679 × 10−1 (3.22 × 10−³) = | 1.3553 × 10−1 (1.50 × 10−³) = | 1.3208 × 10−1 (1.24 × 10−2) = | 9.4521 × 10−2 (1.63 × 10−³) + | 9.0742 × 10−2 (1.51 × 10−³) + | 9.5664 × 10−2 (1.72 × 10−³) + |
MaF3-5 | 8.2609 × 10−2 4.18 × 10−³ | 9.0837 × 10−2 (3.56 × 10−³) − | 1.1869 × 10−1 (3.27 × 10−³) − | 1.6911 × 10−1 (7.46 × 10−2) − | 8.4313 × 10−2 (3.70 × 10−³) = | 2.3479 × 10−1 (4.96 × 10−1) − | 2.0613 × 10−1 (1.19 × 10−1) − | 1.4569 × 10−1 (1.06 × 10−2) − |
MaF4-5 | 3.0854 × 100 5.97 × 102 | 3.4086 × 100 (2.28 × 10−1) − | 7.8385 × 100 (3.24 × 10−1) − | 3.8983 × 100 (1.85 × 10−1) − | 4.9479 × 100 (1.13 × 100) − | 3.1267 × 100 (4.82 × 10−2) − | 3.1139 × 100 (5.58 × 10−1) = | 3.2691 × 100 (1.70 × 10−1) − |
MaF5-5 | 2.4984 × 100 7.43 × 10−1 | 2.5687 × 100 (8.57 × 10−2) − | 6.8677 × 100 (1.82 × 10−1) − | 2.7249 × 100 (4.53 × 10−2) − | 2.6461 × 100 (8.22 × 10−1) − | 2.6487 × 100 (1.25 × 100) − | 1.7817 × 100 (2.12 × 10−2) + | 1.3930 × 101 (1.67 × 100) + |
MaF6-5 | 7.2501 × 10−³ 4.29 × 10−2 | 8.0726 × 10−2 (1.02 × 10−³) − | 7.2735 × 10−2 (4.76 × 10−1) − | 8.0282 × 10−³ (1.16 × 10−³) − | 9.2862 × 10−2 (8.64 × 10−2) − | 7.3210 × 10−³ (5.44 × 10−³) = | 7.9108 × 10−³ (1.29 × 10−³) = | 1.0689 × 10−2 (1.88 × 10−³) − |
MaF7-5 | 2.6563 × 10−1 1.67 × 100 | 3.5428 × 10−1 (4.01 × 10−³) − | 9.8822 × 10−1 (6.53 × 10−1) − | 3.2756 × 10−1 (4.02 × 10−³) − | 6.6489 × 10−1 (2.14 × 10−1) − | 2.9005 × 10−1 (7.52 × 10−2) − | 2.7418 × 10−1 (4.05 × 10−³) = | 3.1979 × 10−1 (2.63 × 10−2) − |
MaF8-5 | 2.6988 × 10−1 4.89 × 101 | 2.7666 × 10−1 (6.39 × 10−³) − | 3.5750 × 10−1 (1.68 × 100) − | 2.9077 × 10−1 (2.83 × 10−2) − | 4.5119 × 10−1 (7.52 × 10−2) − | 8.0480 × 10−2 (1.15 × 10−³) + | 8.5273 × 10−2 (1.86 × 10−³) + | 1.0078 × 10−1 (5.62 × 10−³) + |
MaF9-5 | 1.0636 × 10−1 7.21 × 101 | 6.0092 × 10−1 (1.52 × 10−1) − | 2.4862 × 10−1 (1.30 × 100) − | 4.3125 × 10−1 (1.43 × 10−1) − | 3.8018 × 10−1 (3.58 × 10−1) − | 3.0522 × 10−1 (7.37 × 10−³) − | 4.5541 × 10−1 (2.53 × 10−1) − | 1.3954 × 10−1 (6.56 × 10−³) − |
MaF10-5 | 2.1531 × 100 6.33 × 10−2 | 4.8581 × 10−1 (3.16 × 10−2) + | 7.8860 × 10−1 (9.97 × 10−2) + | 5.4787 × 10−1 (7.68 × 10−³) + | 4.2839 × 10−1 (2.32 × 10−1) + | 8.2042 × 10−1 (2.36 × 10−1) + | 3.9001 × 10−1 (1.05 × 10−2) + | 7.0136 × 10−1 (1.08 × 10−1) + |
MaF11-5 | 1.0579 × 100 9.68 × 10−2 | 8.3222 × 10−1 (1.86 × 10−³) + | 4.4351 × 100 (2.41 × 10−2) − | 6.0541 × 10−1 (9.28 × 10−³) + | 4.9736 × 10−1 (4.24 × 10−2) + | 4.6437 × 10−1 (1.78 × 10−2) + | 3.9941 × 10−1 (3.90 × 10−³) + | 4.9583 × 10−1 (4.73 × 10−2) + |
MaF12-5 | 1.0745 × 100 9.24 × 10−2 | 1.1697 × 100 (3.05 × 10−³) − | 1.3644 × 100 (1.69 × 10−2) − | 1.2294 × 100 (5.59 × 10−³) − | 1.2215 × 100 (2.35 × 10−2) − | 1.2810 × 100 (8.98 × 10−³) − | 1.2540 × 100 (6.69 × 10−³) − | 1.1161 × 100 (9.47 × 10−³) − |
MaF13-5 | 3.3819 × 10−1 1.63 × 10−1 | 2.9729 × 10−1 (4.49 × 10−³) + | 2.5779 × 10−1 (1.96 × 10−1) + | 2.2398 × 10−1 (1.03 × 10−2) + | 6.9643 × 10−1 (9.40 × 10−2) − | 8.3813 × 10−2 (5.78 × 10−³) + | 1.3760 × 10−1 (1.98 × 10−2) + | 1.3864 × 10−1 (9.91 × 10−³) + |
MaF14-5 | 9.9542 × 101 1.26 × 102 | 7.9707 × 10−1 (3.49 × 10−1) + | 3.8723 × 10−1 (2.29 × 100) + | 7.6784 × 10−1 (4.80 × 10−1) + | 7.1840 × 10−1 (3.38 × 100) + | 2.2656 × 100 (8.02 × 10−1) + | 1.9552 × 100 (1.11 × 100) + | 4.7653 × 10−1 (8.70 × 10−2) + |
MaF15-5 | 2.5200 × 101 3.40 × 100 | 1.6373 × 100 (2.74 × 10−1) + | 5.8242 × 100 (6.55 × 10−1) + | 3.3027 × 100 (8.56 × 10−1) + | 1.3832 × 100 (1.05 × 100) + | 1.1633 × 100 (5.57 × 10−2) + | 1.1731 × 100 (3.97 × 10−2) + | 7.9347 × 10−1 (2.48 × 10−2) + |
MaF1-10 | 3.8847 × 10−1 1.15 × 10−1 | 3.2801 × 10−1 (5.12 × 10³) + | 4.7539 × 10−1 (1.96 × 10−2) − | 2.4884 × 10−1 (2.25 × 10³) + | 6.7891 × 10−1 (6.34 × 10−2) − | 2.3295 × 10−1 (1.25 × 10³) + | 2.3898 × 10−1 (1.56 × 10³) + | 2.3036 × 10−1 (1.88 × 10−³) + |
MaF2-10 | 2.6095 × 10−1 2.28 × 10−2 | 2.1939 × 10−1 (2.81 × 10−2) + | 2.7208 × 10−1 (3.81 × 10−2) − | 1.6838 × 10−1 (3.12 × 10−³) + | 4.5747 × 10−1 (6.32 × 10−2) − | 3.3075 × 10−1 (1.56 × 10−2) − | 1.9052 × 10−1 (3.47 × 10−³) + | 2.3787 × 10−1 (2.22 × 10−2) + |
MaF3-10 | 1.9296 × 10−1 1.19 × 10−1 | 3.6882 × 102 (4.27 × 102) − | 2.1532 × 10−1 (5.21 × 10−³) − | 9.4119 × 103 (3.95 × 103) − | 2.3506 × 10−1 (2.40 × 100) − | 3.0333 × 103 (2.29 × 103) − | 1.0104 × 103 (1.70 × 103) − | 2.5282 × 10−1 (2.35 × 10−³) − |
MaF4-10 | 1.0634 × 102 1.75 × 103 | 9.0035 × 101 (7.89 × 100) + | 4.1675 × 102 (3.19 × 103) − | 8.0853 × 101 (4.30 × 101) + | 2.3817 × 102 (3.46 × 101) − | 5.8700 × 101 (3.48 × 100) + | 5.9376 × 101 (5.01 × 100) + | 2.0630 × 102 (3.24 × 101) − |
MaF5-10 | 6.1000 × 101 1.86 × 101 | 7.7751 × 101 (8.43 × 10−1) − | 2.5978 × 102 (1.98 × 101) − | 6.4025 × 101 (4.63 × 100) − | 9.0194 × 101 (9.37 × 100) − | 6.5317 × 101 (2.05 × 100) − | 6.1263 × 101 (2.03 × 100) − | 3.0626 × 102 (2.40 × 10−1) − |
MaF6-10 | 1.7214 × 10−1 7.50 × 100 | 3.0201 × 10−1 (4.52 × 10−1) − | 1.8762 × 10−1 (5.45 × 10−1) − | 6.9385 × 100 (6.82 × 100) − | 3.8519 × 10−1 (2.23 × 10−2) − | 3.4760 × 100 (3.58 × 100) − | 3.5467 × 100 (1.60 × 100) − | 1.2812 × 100 (2.95 × 10−³) − |
MaF7-10 | 1.7575 × 101 3.46 × 100 | 1.1201 × 100 (9.37 × 10−2) + | 2.6346 × 100 (2.16 × 10−1) + | 8.3232 × 10−1 (6.98 × 10−³) + | 2.9247 × 100 (4.32 × 10−1) + | 9.3718 × 10−1 (4.22 × 10−2) + | 9.9884 × 10−1 (1.61 × 10−2) + | 1.7941 × 100 (2.60 × 10−1) + |
MaF8-10 | 1.2987 × 100 6.17 × 101 | 4.9619 × 10−1 (5.50 × 10−2) + | 9.4960 × 10−1 (3.31 × 100) + | 1.6105 × 10−1 (7.65 × 10−³) + | 9.5714 × 10−1 (1.61 × 10−1) + | 1.2975 × 10−1 (1.89 × 10−2) + | 1.3411 × 10−1 (2.51 × 10−³) + | 1.8149 × 10−1 (2.55 × 10−2) + |
Problems | Two Arch-D | NSGAIII | MOEA/DD | KnEA | RVEA | hpaEA | VaEA | NSGAIISDR |
---|---|---|---|---|---|---|---|---|
MaF9-10 | 1.3767 × 100 1.01 × 102 | 5.3925 × 10−1 (1.40 × 10−1) + | 6.5337 × 100 (2.89 × 100) − | 3.1205 × 10 1 (2.96 × 101) − | 8.5061 × 10−1 (2.00 × 10−1) + | 3.0532 × 10−1 (1.20 × 10−1) + | 2.1405 × 10−1 (8.91 × 10−2) + | 1.9701 × 10−1 (8.42 × 10−3) + |
MaF10-10 | 1.0928 × 100 3.81 × 10−2 | 1.1583 × 100 (7.23 × 10−2) − | 1.9436 × 100 (6.45 × 10−2) − | 1.2529 × 100 (1.71 × 10−2) − | 1.2849 × 100 (4.34 × 10−2) − | 1.4610 × 100 (2.14 × 10−1) − | 1.1478 × 100 (7.93 × 10−2) − | 1.7939 × 100 (1.25 × 10−1) − |
MaF11-10 | 1.0464 × 100 3.71 × 10−1 | 4.3444 × 100 (9.03 × 10−2) − | 1.7965 × 100 (3.07 × 10−2) − | 2.7405 × 100 (3.32 × 10−2) − | 8.8117 × 100 (1.82 × 100) − | 1.1432 × 100 (4.12 × 10−2) − | 1.0746 × 100 (1.62 × 10−2) − | 1.6378 × 100 (1.10 × 10−1) − |
MaF12-10 | 4.0685 × 100 3.46 × 10−1 | 4.3884 × 100 (3.84 × 10−2) − | 6.5672 × 100 (1.10 × 10−2) − | 5.2698 × 100 (2.66 × 10−2) − | 4.8662 × 100 (5.81 × 10−2) − | 5.1899 × 100 (2.59 × 10−1) − | 4.2516 × 100 (2.85 × 10−2) − | 4.6239 × 100 (5.15 × 10−2) − |
MaF13-10 | 2.5486 × 10−1 1.47 × 10−1 | 4.1263 × 10−1 (2.72 × 10−2) − | 4.4820 × 10−1 (5.24 × 10−3) − | 2.6770 × 10−1 (1.62 × 10−2) − | 8.9039 × 10−1 (2.71 × 10−1) − | 1.1376 × 10−1 (7.67 × 10−3) + | 1.7319 × 10−1 (2.72 × 10−2) + | 1.8447 × 10−1 (1.17 × 10−2) + |
MaF14-10 | 3.6053 × 103 3.91 × 103 | 1.6137 × 100 (4.10 × 100) + | 5.2802 × 10−1 (2.72 × 100) + | 2.0355 × 102 (3.21 × 102) + | 6.1964 × 10−1 (1.83 × 10−1) + | 1.1869 × 102 (1.80 × 102) + | 1.0076 × 101 (5.00 × 100) + | 1.3157 × 100 (1.64 × 10−1) + |
MaF15-10 | 4.0687 × 101 5.71 × 100 | 3.2906 × 100 (2.38 × 100) + | 1.6765 × 101 (2.80 × 100) + | 4.7879 × 101 (1.66 × 101) − | 1.0670 × 100 (6.03 × 10−2) + | 2.7897 × 100 (1.12 × 100) + | 1.3290 × 100 (3.20 × 10−1) + | 1.1020 × 100 (2.85 × 10−2) + |
MaF1-15 | 3.3100 × 10−1 1.17 × 10−1 | 4.2070 × 10−1 (6.85 × 10−3) − | 5.4084 × 10−1 (3.32 × 10−2) − | 3.9638 × 10−1 (2.42 × 10−2) − | 6.6399 × 10−1 (6.72 × 10−2) − | 2.8224 × 10−1 (5.46 × 10−3) + | 2.8315 × 10−1 (1.65 × 10−3) + | 2.9106 × 10−1 (5.77 × 10−3) + |
MaF2-15 | 1.8845 × 10−1 3.09 × 10−2 | 2.4723 × 10−1 (2.39 × 10−2) − | 4.2432 × 10−1 (4.19 × 10−2) − | 1.9211 × 10−1 (6.51 × 10−3) = | 5.0625 × 10−1 (1.65 × 10−1) − | 4.8030 × 10−1 (1.64 × 10−2) − | 2.0511 × 10−1 (3.40 × 10−3) − | 3.1962 × 10−1 (3.20 × 10−2) − |
MaF3-15 | 8.1378 × 10−1 3.04 × 10−3 | 1.7598 × 100 (5.09 × 100) − | 1.1909 × 10−1 (4.94 × 100) + | 4.9242 × 103 (5.41 × 103) − | 1.3833 × 10−1 (1.20 × 10−1) + | 9.0950 × 103 (5.42 × 103) − | 7.5296 × 103 (9.92 × 103) − | 1.4109 × 10−1 (1.47 × 10−3) + |
MaF4-15 | 3.6131 × 103 6.49 × 103 | 4.7241 × 103 (3.12 × 102) + | 1.4906 × 103 (2.14 × 103) + | 1.9243 × 103 (4.70 × 102) + | 8.1507 × 103 (1.80 × 103) + | 1.6215 × 103 (1.78 × 102) + | 1.7141 × 103 (3.33 × 102) + | 7.7858 × 103 (1.40 × 103) + |
MaF5-15 | 2.3753 × 103 4.40 × 102 | 4.0975 × 103 (1.98 × 10−1) − | 7.2914 × 103 (6.70 × 101) − | 3.6769 × 103 (1.93 × 102) − | 2.9293 × 103 (2.66 × 102) − | 2.3912 × 103 (9.95 × 101) − | 2.5676 × 103 (6.42 × 101) − | 7.2431 × 103 (2.55 × 102) − |
MaF6-15 | 1.9554 × 10−1 8.80 × 10−1 | 3.7384 × 10−1 (1.64 × 10−1) − | 1.6390 × 10−1 (3.10 × 10−3) = | 4.8147 × 101 (9.85 × 100) − | 2.3346 × 10−1 (2.38 × 10−1) − | 1.3535 × 101 (8.20 × 100) − | 3.6300 × 100 (1.23 × 100) − | 7.5413 × 10−3 (1.28 × 10−3) + |
MaF7-15 | 3.0745 × 100 2.07 × 10−2 | 2.8347 × 100 (4.41 × 10−2) + | 3.4554 × 100 (4.28 × 10−2) − | 2.4546 × 100 (2.82 × 10−1) + | 2.7596 × 100 (5.18 × 10−1) + | 3.0156 × 100 (4.01 × 10−1) + | 2.3330 × 100 (2.40 × 10−1) + | 4.2609 × 100 (5.20 × 10−1) − |
MaF8-15 | 1.6376 × 10−1 8.74 × 10−3 | 4.1663 × 10−1 (4.81 × 10−3) − | 1.3276 × 100 (1.84 × 10−2) − | 1.4318 × 10−1 (5.31 × 10−3) + | 1.2941 × 100 (1.85 × 10−1) − | 1.5480 × 10−1 (3.41 × 10−3) + | 1.7215 × 10−1 (3.85 × 10−3) − | 2.2177 × 10−1 (2.06 × 10−2) − |
MaF9-15 | 1.5617 × 102 9.97 × 101 | 2.1172 × 100 (4.19 × 100) + | 9.5364 × 10−1 (1.33 × 10−2) + | 4.4992 × 10−1 (5.32 × 10−1) + | 1.8558 × 100 (2.41 × 100) + | 1.4924 × 10−1 (3.88 × 10−3) + | 2.9089 × 10−1 (1.57 × 10−1) + | 2.1064 × 10−1 (9.27 × 10−3) + |
MaF10-15 | 3.9705 × 100 3.55 × 10−2 | 1.8887 × 100 (8.30 × 10−2) + | 2.0407 × 100 (6.91 × 10−2) + | 1.9456 × 100 (3.63 × 10−2) + | 1.9865 × 100 (5.56 × 10−2) + | 2.0644 × 100 (8.86 × 10−2) + | 1.7254 × 100 (1.10 × 10−1) + | 2.4796 × 100 (4.84 × 10−2) + |
MaF11-15 | 4.1226 × 100 9.97 × 10−1 | 6.7039 × 100 (4.53 × 10−1) − | 3.5955 × 101 (3.70 × 10−2) + | 4.6635 × 100 (7.08 × 10−2) − | 4.6274 × 100 (1.05 × 10−1) − | 1.9243 × 100 (9.90 × 10−2) + | 1.6971 × 100 (4.82 × 10−2) + | 2.3690 × 100 (6.63 × 10−2) + |
MaF12-15 | 1.3829 × 101 8.47 × 10−1 | 8.0424 × 100 (9.96 × 10−2) + | 8.6339 × 100 (1.59 + × 10−1) + | 6.2047 × 100 (6.25 × 10−2) + | 7.4553 × 100 (2.91 × 10−1) + | 1.2237 × 101 (7.56 × 10−1) + | 7.1922 × 100 (8.65 × 10−2) + | 8.2112 × 100 (8.47 × 10−1) + |
MaF13-15 | 5.0668 × 10−1 2.05 × 10−1 | 1.6947 × 100 (8.43 × 10−2) − | 3.8754 × 10−1 (4.13 × 10−2) + | 1.1619 × 10−1 (1.07 × 10−2) + | 1.2745 × 100 (7.34 × 10−1) − | 1.3703 × 10−1 (1.11 × 10−2) + | 1.9194 × 10−1 (3.47 × 10−2) + | 1.8125 × 10−1 (1.08 × 10−2) + |
MaF14-15 | 1.2021 × 102 1.47 × 102 | 1.4878 × 100 (7.32 × 10−1) + | 5.1629 × 10−1 (5.96 × 10−3) + | 5.0679 × 101 (5.17 × 102) + | 7.4847 × 10−1 (2.33 × 10−1) + | 7.5186 × 100 (8.66 × 100) + | 7.6563 × 100 (6.64 × 100) + | 1.2116 × 100 (1.70 × 10−1) + |
MaF15-15 | 5.8367 × 101 9.43 × 100 | 4.6599 × 100 (4.41 × 100) + | 1.6858 × 100 (2.91 × 10−1) + | 1.2239 × 102 (3.09 × 101) − | 1.3129 × 100 (6.45 × 10−2) + | 9.7637 × 100 (2.42 × 100) + | 2.6989 × 100 (2.73 × 10−1) + | 1.2697 × 100 (3.16 × 10−2) + |
+/−/= | 20/23/2 | 17/26/2 | 19/23/3 | 17/26/2 | 26/17/2 | 27/14/4 | 27/18/0 |
Problems | β = 0.1 | β = 0.2 | β = 0.3 | β = 0.4 | β = 0.5 |
---|---|---|---|---|---|
MaF1-5 | 1.9361 × 10−1 | 1.0156 × 100 | 8.7439 × 10−1 | 1.0869 × 100 | 1.0674 × 100 |
MaF2-5 | 1.2540 × 100 | 1.9446 × 10−1 | 1.2052 × 100 | 1.0837 × 100 | 1.2382 × 100 |
MaF3-5 | 1.0926 × 100 | 1.6368 × 10−1 | 1.1206 × 100 | 8.5473 × 10−1 | 9.9766 × 10−1 |
MaF4-5 | 1.1434 × 100 | 1.0369 × 100 | 9.6906 × 10−1 | 9.8466 × 10−1 | 1.2896 × 100 |
MaF5-5 | 1.0570 × 100 | 2.3708 × 10−1 | 1.1298 × 100 | 1.0517 × 100 | 9.8865 × 10−1 |
MaF6-5 | 1.0442 × 100 | 1.9064 × 10−1 | 1.0836 × 100 | 1.1109 × 100 | 9.3124 × 10−1 |
MaF7-5 | 1.1546 × 100 | 3.2421 × 10−1 | 7.3017 × 10−1 | 1.0234 × 100 | 9.0161 × 10−1 |
MaF8-5 | 1.1382 × 100 | 1.4518 × 10−1 | 1.1256 × 100 | 1.5466 × 10−1 | 1.1746 × 100 |
MaF9-5 | 1.0274 × 100 | 1.3021 × 100 | 1.0739 × 100 | 1.0344 × 100 | 1.1065 × 100 |
MaF10-5 | 2.2074 × 10−1 | 1.7793 × 10−1 | 9.6060 × 10−1 | 9.2230 × 10−1 | 1.1880 × 100 |
MaF11-5 | 2.6770 × 10−1 | 1.9138 × 10−1 | 9.7079 × 10−1 | 9.9605 × 10−1 | 9.8776 × 10−1 |
MaF12-5 | 2.3673 × 10−1 | 1.1375 × 100 | 9.7738 × 10−1 | 8.7156 × 10−1 | 9.4840 × 10−1 |
MaF13-5 | 1.0145 × 100 | 1.2126 × 100 | 9.2151 × 10−1 | 8.8058 × 10−1 | 1.1845 × 100 |
MaF14-5 | 1.1896 × 100 | 1.0181 × 100 | 1.1256 × 100 | 1.2166 × 10−1 | 1.1124 × 10−1 |
MaF15-5 | 1.1282 × 100 | 1.6536 × 10−1 | 1.0052 × 100 | 1.1078 × 100 | 1.2553 × 100 |
Problems | β = 0.6 | β = 0.7 | β = 0.8 | β = 0.9 | β = 1.0 |
---|---|---|---|---|---|
MaF1-5 | 9.4293 × 10−1 | 1.0189 × 100 | 9.2574 × 10−1 | 9.9358 × 10−1 | 1.0574 × 100 |
MaF2-5 | 9.7363 × 10−1 | 1.0439 × 100 | 8.3417 × 10−1 | 1.0067 × 100 | 8.8881 × 10−1 |
MaF3-5 | 9.1630 × 10−1 | 1.0596 × 100 | 1.2256 × 100 | 8.6536 × 10−1 | 8.7178 × 10−1 |
MaF4-5 | 1.1585 × 100 | 9.8553 × 10−1 | 9.1146 × 10−1 | 1.0135 × 100 | 1.1021 × 100 |
MaF5-5 | 1.0614 × 100 | 8.9829 × 10−1 | 1.1919 × 100 | 8.4124 × 10−1 | 1.0229 × 100 |
MaF6-5 | 9.0160 × 10−1 | 1.0544 × 100 | 1.1214 × 100 | 7.8145 × 10−1 | 8.8379 × 10−1 |
MaF7-5 | 1.0889 × 100 | 9.5638 × 10−1 | 1.0512 × 100 | 9.6275 × 10−1 | 8.8720 × 10−1 |
MaF8-5 | 1.1479 × 100 | 1.2521 × 100 | 1.1092 × 100 | 1.1545 × 100 | 1.0437 × 100 |
MaF9-5 | 1.3618 × 10−1 | 1.6021 × 100 | 3.1440 × 10−1 | 1.3218 × 10−1 | 1.3046 × 100 |
MaF10-5 | 1.0188 × 100 | 1.0159 × 100 | 9.8462 × 10−1 | 1.0523 × 100 | 9.8052 × 10−1 |
MaF11-5 | 9.3733 × 10−1 | 9.0826 × 10−1 | 1.0970 × 100 | 8.8298 × 10−1 | 9.7087 × 10−1 |
MaF12-5 | 1.2302 × 100 | 9.8316 × 10−1 | 1.1134 × 100 | 9.8456 × 10−1 | 8.0840 × 10−1 |
MaF13-5 | 9.1040 × 10−1 | 8.9130 × 10−1 | 9.9249 × 10−1 | 1.0142 × 100 | 1.0193 × 100 |
MaF14-5 | 1.1236 × 100 | 1.1630 × 10−1 | 1.3638 × 10−1 | 3.3340 × 10−1 | 1.1313 × 100 |
MaF15-5 | 1.1382 × 100 | 1.1540 × 100 | 1.0589 × 100 | 1.1714 × 100 | 1.3945 × 100 |
Problems | β = 1.1 | β = 1.2 | β = 1.3 | β = 1.4 | β = 1.5 |
---|---|---|---|---|---|
MaF1-5 | 1.1071 × 100 | 9.4357 × 10−1 | 1.1988 × 100 | 1.0151 × 100 | 1.0058 × 100 |
MaF2-5 | 1.2518 × 10−1 | 6.8046 × 10−1 | 1.0479 × 100 | 1.0136 × 100 | 1.0081 × 100 |
MaF3-5 | 8.4891 × 10−1 | 8.5646 × 10−1 | 1.1052 × 100 | 8.1836 × 10−1 | 9.9570 × 10−1 |
MaF4-5 | 1.0521 × 100 | 8.4880 × 10−1 | 9.2458 × 10−1 | 1.0162 × 100 | 7.8815 × 10−1 |
MaF5-5 | 1.1118 × 100 | 1.0258 × 100 | 9.6185 × 10−1 | 9.7589 × 10−1 | 9.2210 × 10−1 |
MaF6-5 | 1.1501 × 100 | 8.9643 × 10−1 | 1.0135 × 100 | 1.1382 × 100 | 1.1913 × 100 |
MaF7-5 | 8.5490 × 10−1 | 1.1539 × 100 | 1.2590 × 100 | 8.3618 × 10−1 | 1.0272 × 100 |
MaF8-5 | 1.2517 × 100 | 5.8080 × 10−1 | 1.2218 × 10−1 | 1.0908 × 100 | 2.9950 × 10−1 |
MaF9-5 | 1.1466 × 10−1 | 1.3154 × 100 | 1.0069 × 100 | 1.1003 × 100 | 1.1337 × 100 |
MaF10-5 | 9.8591 × 10−1 | 1.1810 × 100 | 9.6601 × 10−1 | 1.0520 × 100 | 1.0716 × 100 |
MaF11-5 | 8.1082 × 10−1 | 1.0238 × 100 | 1.2674 × 100 | 9.8526 × 10−1 | 9.5035 × 10−1 |
MaF12-5 | 8.4588 × 10−1 | 9.1533 × 10−1 | 9.3684 × 10−1 | 8.2870 × 10−1 | 1.0397 × 100 |
MaF13-5 | 1.1351 × 100 | 1.1304 × 100 | 8.3463 × 10−1 | 9.3790 × 10−1 | 4.8714 × 10−1 |
MaF14-5 | 1.0556 × 100 | 3.1750 × 10−1 | 1.3422 × 100 | 1.1218 × 10−1 | 1.3640 × 100 |
MaF15-5 | 1.8720 × 10−1 | 6.1190 × 10−1 | 1.1714 × 100 | 2.5440 × 10−1 | 1.1067 × 100 |
MaF4-5 | 1.0521 × 100 | 8.4880 × 10−1 | 9.2458 × 10−1 | 1.0162 × 100 | 7.8815 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, N.; Dai, C.; Xue, X. A Two-Archive Many-Objective Optimization Algorithm Based on D-Domination and Decomposition. Algorithms 2022, 15, 392. https://doi.org/10.3390/a15110392
Ye N, Dai C, Xue X. A Two-Archive Many-Objective Optimization Algorithm Based on D-Domination and Decomposition. Algorithms. 2022; 15(11):392. https://doi.org/10.3390/a15110392
Chicago/Turabian StyleYe, Na, Cai Dai, and Xingsi Xue. 2022. "A Two-Archive Many-Objective Optimization Algorithm Based on D-Domination and Decomposition" Algorithms 15, no. 11: 392. https://doi.org/10.3390/a15110392
APA StyleYe, N., Dai, C., & Xue, X. (2022). A Two-Archive Many-Objective Optimization Algorithm Based on D-Domination and Decomposition. Algorithms, 15(11), 392. https://doi.org/10.3390/a15110392