Design of HIFU Treatment Plans Using Thermodynamic Equilibrium Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermodynamics
2.2. Thermodynamic Equilibrium Algorithm
2.3. Working Sequence of TEA
2.3.1. Initialize Thermodynamic Systems
2.3.2. Coupling of the Thermodynamic Systems
2.3.3. Compute Equilibrium Temperature and Volume
2.3.4. Update System Thermodynamic State
2.3.5. Check for Entropy Increase
2.3.6. Check for Thermodynamic Equilibrium
2.4. HIFU Treatment Plan
2.5. Fitness Function
2.5.1. Calculation of the Heat Deposition
2.5.2. Thermal Model Execution
2.5.3. Evaluation of the Treated Area
3. Results & Discussions
3.1. Optimization Performance
3.2. Application to HIFU
3.2.1. HIFU Treatment Setup
- 495 × 495 grid points, discretized simulation domain; periodic boundary condition.
- 0.2 mm of spatial resolution. Linear interpolation was used to upsample the original AustinWoman data.
- 0.1 s temporal resolution.
- The total length of the simulation .
- Positions of the ultrasound focus center are limited to the bounding box at grid positions [270, 230] × [345, 295].
- Maximum sonication and cooling periods = [0, 5 s], = [0, 20 s].
- Number of sonications considered .
3.2.2. Evaluation of the Equilibrium Process
3.2.3. Visualization of Treatment Plan
3.2.4. Validation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2011, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Ter Haar, G.; Rivens, I.; Chen, L.; Riddler, S. High intensity focused ultrasound for the treatment of rat tumours. Phys. Med. Biol. 1991, 36, 1495. [Google Scholar] [CrossRef]
- Ichihara, M.; Sasaki, K.; Umemura, S.I.; Kushima, M.; Okai, T. Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion. Ultrasound Med. Biol. 2007, 33, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Suomi, V.; Jaros, J.; Treeby, B.; Cleveland, R.O. Full modeling of high-intensity focused ultrasound and thermal heating in the kidney using realistic patient models. IEEE Trans. Biomed. Eng. 2017, 65, 969–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Salami, N.M. Evolutionary algorithm definition. Am. Eng. Appl. Sci. 2009, 2, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Hornby, G.S.; Pollack, J.B. Creating high-level components with a generative representation for body-brain evolution. Artif. Life 2002, 8, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Clune, J.; Beckmann, B.E.; Ofria, C.; Pennock, R.T. Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondhaim, Norway, 18–21 May 2009; pp. 2764–2771. [Google Scholar]
- Clune, J.; Ofria, C.; Pennock, R.T. How a generative encoding fares as problem-regularity decreases. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Berlin, Germany, 13–17 September 2008; pp. 358–367. [Google Scholar]
- Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. arXiv 2001, arXiv:cs/0102027. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). pp. 69–73. [Google Scholar]
- Kennedy, J. The Particle Swarm: Social Adaptation of Knowledge. In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308. [Google Scholar]
- Eberhart, R.C.; Shi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Poli, R. An analysis of publications on particle swarm optimization applications. J. Artif. Evol. Appl. 2007. [Google Scholar]
- Poli, R. Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008. [Google Scholar] [CrossRef] [Green Version]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical report; Technical report-tr06; Erciyes University, Engineering Faculty: Kayseri, Turkey, 2005. [Google Scholar]
- Lucic, P.; Teodorovic, D. Bee system: Modeling combinatorial optimization transportation engineering problems by swarm intelligence. In Proceedings of the Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Saõ Miguel, Azores Islands, Portugal, 13–19 June 2001; pp. 441–445. [Google Scholar]
- Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life, Paris, France, 11–13 December 1991; Volume 142, pp. 134–142. [Google Scholar]
- Dorigo, M. Optimization, Learning and Natural Algorithms. Ph. D. Thesis, Polytechnic University of Milan, Milan, Italy, 1992. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Lari, S.M.S.; Mojra, A.; Rokni, M. Simultaneous localization of multiple tumors from thermogram of tissue phantom by using a novel optimization algorithm inspired by hunting dogs. Comput. Biol. Med. 2019, 112, 103377. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, H.M. Applications of Evolutionary Computation in Chemistry; Springer Science & Business Media: Berlin, Germany, 2004; Volume 110, pp. 1–32. [Google Scholar]
- Angeline, P.J. Evolving fractal movies. In Proceedings of the 1st annual Conference on Genetic Programming, Cambridge, MA, USA, 18–31 July 1996; pp. 503–511. [Google Scholar]
- Horner, A.; Goldberg, D. GAs and computer-assisted music composition. In Proceedings of the 4th International Conference on the New Technologies in the Oil, Gas & Petrochemical Industries, Urbana-Champaign, IL, USA, 1993. [Google Scholar]
- Horner, A.; Goldberg, D. Machine tongues XVI: GAs and their application to FM matching synthesis. Comp. Music J. 1993, 17, 17–29. [Google Scholar] [CrossRef]
- Sims, K. Artificial evolution for computer graphics. In Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 28 July–2 August 1991; pp. 319–328. [Google Scholar]
- Colombetti, M.; Dorigo, M. Evolutionary computation in behavior engineering. In Evolutionary Computation: Theory and Applications; World Scientific: Singapore, 1999; pp. 37–80. [Google Scholar]
- Darwen, P.; Yao, X. Automatic modularization by speciation. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 88–93. [Google Scholar]
- Fogel, D.B. An evolutionary approach to the traveling salesman problem. Biol. Cybern. 1988, 60, 139–144. [Google Scholar] [CrossRef]
- Chellaboina, V.; Ranga, M.K. Reduced order optimal control using genetic algorithms. In Proceedings of the American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 1407–1412. [Google Scholar]
- Bontoux, B.; Feillet, D. Ant colony optimization for the traveling purchaser problem. Comput. Oper. Res. 2008, 35, 628–637. [Google Scholar] [CrossRef]
- Varol, H.A.; Bingul, Z. A new PID tuning technique using ant algorithm. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 3, pp. 2154–2159. [Google Scholar]
- Fisher, M.L. The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 2004, 50, 1861–1871. [Google Scholar] [CrossRef] [Green Version]
- Andrieu, C.; Doucet, A. Simulated annealing for maximum a posteriori parameter estimation of hidden Markov models. IEEE Trans. Inf. Theory 2000, 46, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Van den Bergh, F.; Engelbrecht, A.P. A convergence proof for the particle swarm optimiser. Fundam. Inform. 2010, 105, 341–374. [Google Scholar] [CrossRef] [Green Version]
- Bonyadi, M.R.; Michalewicz, Z. A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intell. 2014, 8, 159–198. [Google Scholar] [CrossRef]
- Man, K.F.; Tang, K.S.; Kwong, S. Genetic algorithms: Concepts and applications [in engineering design]. IEEE Trans. Ind. Electron. 1996, 43, 519–534. [Google Scholar] [CrossRef]
- Rashed, G.; Shaheen, H.; Cheng, S. Evolutionary optimization techniques for optimal location and parameter settings of TCSC under single line contingency. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–9. [Google Scholar]
- Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 2010, 60, 2087–2098. [Google Scholar] [CrossRef] [Green Version]
- He, X.J.; Zeng, J.C.; Jie, J. Artificial neural network weights optimization design based on MEC algorithm. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004; Volume 6, pp. 3361–3364. [Google Scholar]
- Lari, S. Assessment of Geometrical Features of Internal Flaws with Artificial Neural Network Optimized by a Thermodynamic Equilibrium Algorithm. Master’s Thesis, University of Waterloo, Waterloo, ON, USA, 2020. [Google Scholar]
- Marquet, F.; Pernot, M.; Aubry, J.F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: Protocol validation and in vitro results. Phys. Med. Biol. 2009, 54, 2597. [Google Scholar] [CrossRef] [PubMed]
- Huijssen, J.; Verweij, M.D. An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers. J. Acoust. Soc. Am. 2010, 127, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treeby, B.E.; Jaros, J.; Rendell, A.P.; Cox, B. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using ak-space pseudospectral method. J. Acoust. Soc. Am. 2012, 131, 4324–4336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenot, J.; Melodelima, D.; Chavrier, F.; Vignot, A.; Kocot, A.; Chapelon, J.Y. Electronic beam steering used with a toroidal HIFU transducer substantially increases the coagulated volume. Ultrasound Med. Biol. 2013, 39, 1241–1254. [Google Scholar] [CrossRef]
- Dillon, C.; Vyas, U.; Payne, A.; Christensen, D.; Roemer, R. An analytical solution for improved HIFU SAR estimation. Phys. Med. Biol. 2012, 57, 4527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenne, J.W.; Preusser, T.; Günther, M. High-intensity focused ultrasound: Principles, therapy guidance, simulations and applications. Z. FÜR Med. Phys. 2012, 22, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Smith, P.P.; Noble, J.A. Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med. Biol. 2010, 36, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Soneson, J.E. A user-friendly software package for HIFU simulation. In Proceedings of the AIP Conference Proceedings on Therapeutic Ultrasound, Minneapolis, MN, USA, 10–13 September 2008; American Institute of Physics: College Park, MD, USA, 2008; Volume 1113, pp. 165–169. [Google Scholar]
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Massey, J.; Geyik, C.; Techachainiran, N.; Hsu, C.; Nguyen, R.; Latson, T.; Ball, M.; Celik, E.; Yilmaz, A. AustinMan and AustinWoman: High fidelity, reproducible, and open-source electromagnetic voxel models. In Proceedings of the the 34th Annual Meeting of the Bioelectromagnetics Society, Brisbane, Australia, 7–12 June 2012. [Google Scholar]
- Hasgall, P.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Gosselin, M.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 3.0; M Gosselin: New York, NY, USA, 2015. [Google Scholar]
- Chongqing Haifu Medical Technology Co. Available online: http://www.haifumedical.com/ (accessed on 1 June 2022).
Function Name | 3D Plot | Function Formula | Minimum Value | Search Domain | Optimum Value of the Cost Function | |
---|---|---|---|---|---|---|
GA | TEA | |||||
Ackley’s function | 0 | |||||
Sphere function | 0 | |||||
Rosenbrock function | 0 | |||||
Beale’s function | 0 | |||||
Goldstein-Price function | ||||||
Booth’s function | 0 | |||||
Matyas’s function | 0 | |||||
Lévi function | ||||||
Three-hump camel function | 0 | |||||
Cross-in-tray function | ||||||
Eggholder function | ||||||
Rastrigin function | 0 | |||||
Bukin function | ||||||
Himmelblau’s function | 0 | |||||
Easom function | ||||||
Holder table function | ||||||
McCormick function | ||||||
Schaffer function N. 2 | ||||||
Schaffer function N. 4 | ||||||
Styblinski-Tang function |
Function Name | 3D Plot | Function Formula | Minimum Value | Search Domain | Optimum Value of the Cost Function | |
---|---|---|---|---|---|---|
GA | TEA | |||||
Rosenbrock function constrained with a cubic and a line | 0 | |||||
Rosenbrock function constrained to a disk | 0 | |||||
Mishra’s Bird function- constrained | ||||||
Townsend function | ||||||
Simionescu function |
Number of Systems | Number of Sonications | ||||
---|---|---|---|---|---|
N | 4 | 5 | 6 | 8 | 10 |
10 | 0.027/0.09 | 0.018/0.054 | 0.018/0.036 | 0/0 | 0/0 |
20 | 0/0.099 | 0/0.081 | 0/0.009 | 0/0 | 0/0 |
30 | 0/0.081 | 0/0 | 0/0 | 0/0 | 0/0 |
Number of Systems | Number of Sonications | ||||
---|---|---|---|---|---|
N | 4 | 5 | 6 | 8 | 10 |
10 | 0.09/0.09 | 0.027/0.045 | 0.045/0.045 | 0/0.018 | 0/0.009 |
20 | 0.036/0.09 | 0.009/0.072 | 0/0.036 | 0/0.009 | 0/0.009 |
30 | 0.036/0.063 | 0/0.027 | 0/0.027 | 0/0.009 | 0.018/0 |
Number of Sonications | |||||
---|---|---|---|---|---|
N | 4 | 5 | 6 | 8 | 10 |
10 | 10 h | 14.42 h | 18.08 h | 21.4 h | 28.46 h |
20 | 13.68 h | 17.42 h | 25.26 h | 25.43 h | 29 h |
30 | 23.22 h | 28.6 h | 38.8 h | 30.48 h | 42.26 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lari, S.; Han, S.W.; Kim, J.U.; Kwon, H.J. Design of HIFU Treatment Plans Using Thermodynamic Equilibrium Algorithm. Algorithms 2022, 15, 399. https://doi.org/10.3390/a15110399
Lari S, Han SW, Kim JU, Kwon HJ. Design of HIFU Treatment Plans Using Thermodynamic Equilibrium Algorithm. Algorithms. 2022; 15(11):399. https://doi.org/10.3390/a15110399
Chicago/Turabian StyleLari, Salman, Sang Wook Han, Jong Uk Kim, and Hyock Ju Kwon. 2022. "Design of HIFU Treatment Plans Using Thermodynamic Equilibrium Algorithm" Algorithms 15, no. 11: 399. https://doi.org/10.3390/a15110399
APA StyleLari, S., Han, S. W., Kim, J. U., & Kwon, H. J. (2022). Design of HIFU Treatment Plans Using Thermodynamic Equilibrium Algorithm. Algorithms, 15(11), 399. https://doi.org/10.3390/a15110399