Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning
Abstract
:1. Introduction
2. Related Studies
- The introduction of two majority voting ensemble deep learning algorithms to accurately classify up to ten different skin lesion classes with improved classification performance.
- The application of distributed computing paradigm to achieve a faster and more timely multiclass classification of skin lesions into one of three or multiple classes.
- The comprehensive evaluation of the introduced majority voting ensemble deep learning algorithms against 28 state-of-the-art deep learning and ensemble learning algorithms as a way of demonstrating their prowess.
3. Materials and Methods
3.1. Dataset
3.2. Methods
3.2.1. Performance Evaluation
3.2.2. Experimental Setup
3.3. Proposed Ensemble Deep Learning Algorithm
3.3.1. Simple Majority Voting Ensemble Deep Learning Algorithm
Algorithm 1: Simple Majority Voting Ensemble Deep Learning |
Given an input image į 1. Broadcast į to the respective handlers (Ϧ1, Ϧ2, …Ϧn) of the learners. 2. Compute the prediction for each handler using distributed processing [80]. 3. Compile responses from all handlers of the learners. 4. Aggregate the results of the handlers based on the maximum voting principle. 5. Determine the class prediction P(ҡj) using Equation (2). End |
3.3.2. Weighted Majority Voting Ensemble Deep Learning Algorithm
Algorithm 2: Weighted Majority Voting Ensemble Deep Learning |
Given an input image į 1. Broadcast į to the respective handlers (Ϧ1, Ϧ2, …Ϧn) of the learners. 2. Compute the prediction for each handler using distributed processing [80]. 3. Compile responses from all handlers of the learners. 4. Compute ѿj for each ᴟj. 5. Aggregate the results of the handlers with ѿj >= 0.25. 6. If exactly one class ҡj has the highest predicted output ᴟj P(ҡj) = ҡj Else P(ҡj) = ҡj with the maximum average weighted confidence μѿj End |
4. Experimental Results
4.1. Regularization and Optimization Outcomes
4.2. Stage 1 Evaluation
4.3. Stage 2 Evaluation
4.4. Comparison with State-of-the-Art Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olugbara, O.O.; Taiwo, T.B.; Heukelman, D. Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis. Math. Probl. Eng. 2018, 2018, 1524286. [Google Scholar] [CrossRef]
- Okuboyejo, D.A.; Olugbara, O.O. Segmentation of Melanocytic Lesion Images Using Gamma Correction with Clustering of Keypoint Descriptors. Diagnostics 2021, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Waris, A.; Ghafoor, M.F.; Gilani, S.O.; Niazi, I.K. Melanoma Segmentation Using Deep Learning with Test-Time Augmentations and Conditional Random Fields. Sci. Rep. 2022, 12, 3948. [Google Scholar] [CrossRef] [PubMed]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fang, Y.; Chen, H.; Zhang, T.; Yin, X.; Man, J.; Yang, X.; Lu, M. Spatiotemporal Trends of the Global Burden of Melanoma in 204 Countries and Territories from 1990 to 2019: Results from the 2019 Global Burden of Disease Study. Neoplasia 2022, 24, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Memon, A.; Bannister, P.; Rogers, I.; Sundin, J.; Al-Ayadhy, B.; James, P.W.; McNally, R.J.Q. Changing Epidemiology and Age-Specific Incidence of Cutaneous Malignant Melanoma in England: An Analysis of the National Cancer Registration Data by Age, Gender and Anatomical Site, 1981–2018. Lancet Reg. Health Eur. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Okuboyejo, D.A.; Olugbara, O.O. A Review of Prevalent Methods for Automatic Skin Lesion Diagnosis. Open Dermatol. J. 2018, 12, 14–53. [Google Scholar] [CrossRef]
- van der Kooij, M.K.; Wetzels, M.J.A.L.; Aarts, M.J.B.; van den Berkmortel, F.W.P.J.; Blank, C.U.; Boers-Sonderen, M.J.; Dierselhuis, M.P.; de Groot, J.W.B.; Hospers, G.A.P.; Piersma, D.; et al. Age Does Matter in Adolescents and Young Adults versus Older Adults with Advanced Melanoma; A National Cohort Study Comparing Tumor Characteristics, Treatment Pattern, Toxicity and Response. Cancers 2020, 12, 2072. [Google Scholar] [CrossRef]
- Davis, D.S.; Robinson, C.; Callender, V.D. Skin Cancer in Women of Color: Epidemiology, Pathogenesis and Clinical Manifestations. Int. J. Women’s Dermatol. 2021, 7, 127–134. [Google Scholar] [CrossRef]
- Paulson, K.G.; Gupta, D.; Kim, T.S.; Veatch, J.R.; Byrd, D.R.; Bhatia, S.; Wojcik, K.; Chapuis, A.G.; Thompson, J.A.; Madeleine, M.M.; et al. Age-Specific Incidence of Melanoma in the United States. JAMA Dermatol. 2020, 156, 57–64. [Google Scholar] [CrossRef]
- Popescu, D.; El-Khatib, M.; El-Khatib, H.; Ichim, L. New Trends in Melanoma Detection Using Neural Networks: A Systematic Review. Sensors 2022, 22, 496. [Google Scholar] [CrossRef] [PubMed]
- Okuboyejo, D.A.; Olugbara, O.O.; Odunaike, S.A. Automating Skin Disease Diagnosis Using Image Classification. Proc. World Congr. Eng. Comput. Sci. 2013, 2, 850–854. [Google Scholar]
- Joseph, S.; Olugbara, O.O. Preprocessing Effects on Performance of Skin Lesion Saliency Segmentation. Diagnostics 2022, 12, 344. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.; Apalla, Z.; Sotiriou, E.; Papageorgiou, C.; Lazaridou, E.; Vakirlis, S.; Ioannides, D.; Lallas, A. The Limitations of Dermoscopy: False-Positive and False-Negative Tumours. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Son, H.M.; Jeon, W.; Kim, J.; Heo, C.Y.; Yoon, H.J.; Park, J.-U.; Chung, T.-M. AI-Based Localization and Classification of Skin Disease with Erythema. Sci. Rep. 2021, 11, 5350. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wei, R.; Gong, L.; Qi, R.; Zhao, Z.; Chen, H.; Song, K.; Abdulrahman, A.A.A.; Wang, Y.; Chen, J.Z.S.; et al. Assessing the Effectiveness of Artificial Intelligence Methods for Melanoma: A Retrospective Review. J. Am. Acad. Dermatol. 2019, 81, 1176–1180. [Google Scholar] [CrossRef]
- Ding, S.; Wu, Z.; Zheng, Y.; Liu, Z.; Yang, X.; Yang, X.; Yuan, G.; Xie, J. Deep Attention Branch Networks for Skin Lesion Classification. Comput. Methods Programs Biomed. 2021, 212, 106447. [Google Scholar] [CrossRef]
- Lucieri, A.; Bajwa, M.N.; Braun, S.A.; Malik, M.I.; Dengel, A.; Ahmed, S. ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis of Skin Lesions. Comput. Methods Programs Biomed. 2022, 215, 106620. [Google Scholar] [CrossRef]
- Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. Applications of CNNs in Computer Vision. In A Guide to Convolutional Neural Networks for Computer Vision; Khan, S., Rahmani, H., Shah, S.A.A., Bennamoun, M., Eds.; Synthesis Lectures on Computer Vision; Springer International Publishing: Cham, Switzerland, 2018; pp. 117–158. [Google Scholar]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Toberer, F.; Winkler, J.; Stolz, W.; Deinlein, T.; Hofmann-Wellenhof, R.; Lallas, A.; Emmert, S.; Buhl, T.; et al. Man against Machine Reloaded: Performance of a Market-Approved Convolutional Neural Network in Classifying a Broad Spectrum of Skin Lesions in Comparison with 96 Dermatologists Working under Less Artificial Conditions. Ann. Oncol. 2020, 31, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-Letz, T.; et al. Deep Learning Outperformed 136 of 157 Dermatologists in a Head-to-Head Dermoscopic Melanoma Image Classification Task. Eur. J. Cancer 2019, 113, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-Wellenhof, R.; et al. Comparison of the Accuracy of Human Readers versus Machine-Learning Algorithms for Pigmented Skin Lesion Classification: An Open, Web-Based, International, Diagnostic Study. Lancet Oncol. 2019, 20, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.H.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Systematic Outperformance of 112 Dermatologists in Multiclass Skin Cancer Image Classification by Convolutional Neural Networks. Eur. J. Cancer 2019, 119, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep Learning Surpasses Dermatologists. Br. J. Dermatol. 2019, 180, e39. [Google Scholar] [CrossRef] [Green Version]
- Codella, N.C.F.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial Intelligence-Based Image Classification Methods for Diagnosis of Skin Cancer: Challenges and Opportunities. Comput. Biol. Med. 2020, 127, 104065. [Google Scholar] [CrossRef]
- Gupta, T.; Saini, S.; Saini, A.; Aggarwal, S.; Mittal, A. Deep Learning Framework for Recognition of Various Skin Lesions Due to Diabetes. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 92–98. [Google Scholar]
- Namozov, A.; Cho, Y.I. Convolutional Neural Network Algorithm with Parameterized Activation Function for Melanoma Classification. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 417–419. [Google Scholar]
- Hasan, M.K.; Roy, S.; Mondal, C.; Alam, M.A.; E Elahi, M.T.; Dutta, A.; Uddin Raju, S.M.T.; Jawad, M.T.; Ahmad, M. Dermo-DOCTOR: A Framework for Concurrent Skin Lesion Detection and Recognition Using a Deep Convolutional Neural Network with End-to-End Dual Encoders. Biomed. Signal Process. Control 2021, 68, 102661. [Google Scholar] [CrossRef]
- Hasan, M.K.; Elahi, M.T.E.; Alam, M.A.; Jawad, M.T.; Martí, R. DermoExpert: Skin Lesion Classification Using a Hybrid Convolutional Neural Network through Segmentation, Transfer Learning, and Augmentation. Inform. Med. Unlocked 2022, 28, 100819. [Google Scholar] [CrossRef]
- Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated Multi-Class Classification of Skin Lesions through Deep Convolutional Neural Network with Dermoscopic Images. Comput. Med. Imaging Graph. 2021, 88, 101843. [Google Scholar] [CrossRef]
- Tawhid, A.; Teotia, T.; Elmiligi, H. Chapter 13—Machine Learning for Optimizing Healthcare Resources. In Machine Learning, Big Data, and IoT for Medical Informatics; Kumar, P., Kumar, Y., Tawhid, M.A., Eds.; Intelligent Data-Centric Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 215–239. [Google Scholar]
- Sugiyama, M. Chapter 27—Support Vector Classification. In Introduction to Statistical Machine Learning; Sugiyama, M., Ed.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 303–320. [Google Scholar]
- Song, M.; Shang, X.; Chang, C.-I. 3-D Receiver Operating Characteristic Analysis for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8093–8115. [Google Scholar] [CrossRef]
- Pawara, P.; Okafor, E.; Groefsema, M.; He, S.; Schomaker, L.R.B.; Wiering, M.A. One-vs-One Classification for Deep Neural Networks. Pattern Recognit. 2020, 108, 107528. [Google Scholar] [CrossRef]
- Tang, P.; Liang, Q.; Yan, X.; Xiang, S.; Zhang, D. GP-CNN-DTEL: Global-Part CNN Model with Data-Transformed Ensemble Learning for Skin Lesion Classification. IEEE J. Biomed. Health Inform. 2020, 24, 2870–2882. [Google Scholar] [CrossRef] [PubMed]
- Al-masni, M.A.; Kim, D.-H.; Kim, T.-S. Multiple Skin Lesions Diagnostics via Integrated Deep Convolutional Networks for Segmentation and Classification. Comput. Methods Programs Biomed. 2020, 190, 105351. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing Fine-Tuned Deep Features for Skin Lesion Classification. Comput. Med. Imaging Graph. 2018, 71, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Jude Hemanth, D. A Hierarchical Three-Step Superpixels and Deep Learning Framework for Skin Lesion Classification. Methods 2022, 202, 88–102. [Google Scholar] [CrossRef]
- Adetiba, E.; Olugbara, O.O. Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features. Sci. World J. 2015, 2015, e786013. [Google Scholar] [CrossRef] [Green Version]
- Mondal, C.; Hasan, M.K.; Ahmad, M.; Awal, M.A.; Jawad, M.T.; Dutta, A.; Islam, M.R.; Moni, M.A. Ensemble of Convolutional Neural Networks to Diagnose Acute Lymphoblastic Leukemia from Microscopic Images. Inform. Med. Unlocked 2021, 27, 100794. [Google Scholar] [CrossRef]
- Pérez, E.; Ventura, S. An Ensemble-Based Convolutional Neural Network Model Powered by a Genetic Algorithm for Melanoma Diagnosis. Neural Comput. Appl. 2021, 34, 10429–10448. [Google Scholar] [CrossRef]
- Mitrea, D.; Badea, R.; Mitrea, P.; Brad, S.; Nedevschi, S. Hepatocellular Carcinoma Automatic Diagnosis within CEUS and B-Mode Ultrasound Images Using Advanced Machine Learning Methods. Sensors 2021, 21, 2202. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Shahin, A.H.; Kamal, A.; Elattar, M.A. Deep Ensemble Learning for Skin Lesion Classification from Dermoscopic Images. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 150–153. [Google Scholar]
- Hilmy, M.A.; Sasongko, P.S. Ensembles of Convolutional Neural Networks for Skin Lesion Dermoscopy Images Classification. In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 29–30 October 2019; pp. 1–6. [Google Scholar]
- Lima, J.P.D.O.; Filho, L.C.S.D.A.; Da Silva, F.S.; Figueiredo, C.M.S. Seródio Figueiredo Pigmented Dermatological Lesions Classification Using Convolutional Neural Networks Ensemble Mediated by Multilayer Perceptron Network. IEEE Lat. Am. Trans. 2019, 17, 1902–1908. [Google Scholar] [CrossRef]
- Wei, L.; Ding, K.; Hu, H. Automatic Skin Cancer Detection in Dermoscopy Images Based on Ensemble Lightweight Deep Learning Network. IEEE Access 2020, 8, 99633–99647. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. Transfer Learning Using a Multi-Scale and Multi-Network Ensemble for Skin Lesion Classification. Comput. Methods Programs Biomed. 2020, 193, 105475. [Google Scholar] [CrossRef]
- Harangi, B. Skin Lesion Classification with Ensembles of Deep Convolutional Neural Networks. J. Biomed. Inform. 2018, 86, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.N.; Koay, C.Y.; Chakraborty, T.; Gupta, S.; Tan, B.L.; Wu, H.; Vardhan, A.; Nguyen, Q.H.; Palaparthi, N.R.; Nguyen, B.P.; et al. Lesion Segmentation and Automated Melanoma Detection Using Deep Convolutional Neural Networks and XGBoost. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 142–147. [Google Scholar]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A Survey on Ensemble Learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 630–645. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual Path Networks. In Proceedings of the 2019 International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 6–9 October 2019; p. 9. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri, M.; Li, Y.; Bharambe, A.; van der Maaten, L. Exploring the Limits of Weakly Supervised Pretraining; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 185–201. [Google Scholar]
- Yalniz, I.Z.; Jegou, H.; Chen, K.; Ai, F.; Paluri, M.; Mahajan, D. Billion-Scale Semi-Supervised Learning for Image Classification. arXiv 2019, arXiv:1905.00546. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4 February 2017; pp. 4278–4284. [Google Scholar]
- Han, D.; Yun, S.; Heo, B.; Yoo, Y. Rethinking Channel Dimensions for Efficient Model Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 732–741. [Google Scholar]
- Gutman, D.; Codella, N.C.F.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; Halpern, A. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, Hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2016, arXiv:1605.01397v1. [Google Scholar] [CrossRef]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef]
- Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Marchetti, M.; Kittler, H.; et al. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2018, arXiv:1902.03368. [Google Scholar] [CrossRef]
- Combalia, M.; Codella, N.C.F.; Rotemberg, V.; Helba, B.; Vilaplana, V.; Reiter, O.; Barreiro, A.; Halpern, A.C.; Puig, S.; Malvehy, J. BCN20000: Dermoscopic Lesions in the Wild. arXiv 2019, arXiv:1908.02288. [Google Scholar] [CrossRef]
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A Patient-Centric Dataset of Images and Metadata for Identifying Melanomas Using Clinical Context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Okuboyejo, D.A.; Olugbara, O.O.; Odunaike, S.A. CLAHE Inspired Segmentation of Dermoscopic Images Using Mixture of Methods; Kim, H.K., Ao, S.-I., Amouzegar, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 355–365. [Google Scholar]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 270–279. [Google Scholar]
- Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel Ensemble Intelligence Methodologies for Rockburst Assessment in Complex and Variable Environments. Sci. Rep. 2022, 12, 1844. [Google Scholar] [CrossRef]
- Kausar, N.; Hameed, A.; Sattar, M.; Ashraf, R.; Imran, A.S.; Abidin, M.Z.U.; Ali, A. Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models. Appl. Sci. 2021, 11, 10593. [Google Scholar] [CrossRef]
- Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Hoang, L.; Lee, S.-H.; Lee, E.-J.; Kwon, K.-R. Multiclass Skin Lesion Classification Using a Novel Lightweight Deep Learning Framework for Smart Healthcare. Appl. Sci. 2022, 12, 2677. [Google Scholar] [CrossRef]
- Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning. IEEE Access 2020, 8, 114822–114832. [Google Scholar] [CrossRef]
- Molina-Molina, E.O.; Solorza-Calderón, S.; Álvarez-Borrego, J. Classification of Dermoscopy Skin Lesion Color-Images Using Fractal-Deep Learning Features. Appl. Sci. 2020, 10, 5954. [Google Scholar] [CrossRef]
- Kotsilieris, T.; Anagnostopoulos, I.; Livieris, I.E. Special Issue: Regularization Techniques for Machine Learning and Their Applications. Electronics 2022, 11, 521. [Google Scholar] [CrossRef]
- Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M.I.; et al. Ray: A Distributed Framework for Emerging AI Applications. arXiv 2018, arXiv:1712.05889. [Google Scholar]
- Wang, Z.; Pan, X.; Wei, G.; Fei, J.; Lu, X. A Faster Convergence and Concise Interpretability TSK Fuzzy Classifier Deep-Wide-Based Integrated Learning. Appl. Soft Comput. 2019, 85, 105825. [Google Scholar] [CrossRef]
- Padmakala, S.; Subasini, C.A.; Karuppiah, S.P.; Sheeba, A. ESVM-SWRF: Ensemble SVM-Based Sample Weighted Random Forests for Liver Disease Classification. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3525. [Google Scholar] [CrossRef] [PubMed]
- Shafieian, S.; Zulkernine, M. Multi-Layer Stacking Ensemble Learners for Low Footprint Network Intrusion Detection. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Sueki, K.; Nishizawa, S.; Yamaura, T.; Tomita, H. Precision and Convergence Speed of the Ensemble Kalman Filter-Based Parameter Estimation: Setting Parameter Uncertainty for Reliable and Efficient Estimation. Prog. Earth Planet. Sci. 2022, 9, 47. [Google Scholar] [CrossRef]
- Janowska, A.; Oranges, T.; Iannone, M.; Romanelli, M.; Dini, V. Seborrheic Keratosis-like Melanoma: A Diagnostic Challenge. Melanoma Res. 2021, 31, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A Multi-Class Skin Cancer Classification Using Deep Convolutional Neural Networks. Multimed. Tools Appl. 2020, 79, 28477–28498. [Google Scholar] [CrossRef]
- Gessert, N.; Nielsen, M.; Shaikh, M.; Werner, R.; Schlaefer, A. Skin Lesion Classification Using Ensembles of Multi-Resolution EfficientNets with Meta Data. MethodsX 2020, 7, 100864. [Google Scholar] [CrossRef] [PubMed]
- Attique Khan, M.; Sharif, M.; Akram, T.; Kadry, S.; Hsu, C.-H. A Two-Stream Deep Neural Network-Based Intelligent System for Complex Skin Cancer Types Classification. Int. J. Intell. Syst. 2021, 1–29. [Google Scholar] [CrossRef]
- Swetha, R.N.; Shrivastava, V.K.; Parvathi, K. Multiclass Skin Lesion Classification Using Image Augmentation Technique and Transfer Learning Models. Int. J. Intell. Unmanned Syst. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Gong, A.; Yao, X.; Lin, W. Classification for Dermoscopy Images Using Convolutional Neural Networks Based on the Ensemble of Individual Advantage and Group Decision. IEEE Access 2020, 8, 155337–155351. [Google Scholar] [CrossRef]
- Thurnhofer-Hemsi, K.; López-Rubio, E.; Domínguez, E.; Elizondo, D.A. Skin Lesion Classification by Ensembles of Deep Convolutional Networks and Regularly Spaced Shifting. IEEE Access 2021, 9, 112193–112205. [Google Scholar] [CrossRef]
Datasets | Descriptions | Sizes | Classes |
---|---|---|---|
ISIC_2017_TRN [4] | Training set for ISIC 2017 Classification Task | 2000 | 3 |
ISIC_2017_VAL [4] | The validation set for ISIC 2017 Classification Task | 150 | 3 |
ISIC_2016_TRN [66] | Training set for ISIC 2016 Classification Task | 900 | 2 |
ISIC_2019_TRN [4,67,69] | Training set for ISIC 2019 Classification Task | 25,331 | 9 |
ISIC_2018_TRN [67,68] | Training set for ISIC 2018 Classification Task | 10,015 | 7 |
ISIC_2020_TRN [70] | Training set for ISIC 2020 Classification Task | 33,126 | 9 |
Database | Benign | Malignant | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AKIEC | BKL | DF | INDB | NV | SK | VASC | BCC | MEL | SCC | ||
ISIC_2017_TRN [4] | 1372 | 254 | 374 | 2000 | |||||||
ISIC_2017_VAL [4] | 78 | 42 | 30 | 150 | |||||||
ISIC_2016_TRN [66] | 1 | 29 | 688 | 182 | 900 | ||||||
ISIC_2019_TRN [4,67,69] | 867 | 2624 | 239 | 12,875 | 253 | 3323 | 4522 | 628 | 25,331 | ||
ISIC_2018_TRN [67,68] | 327 | 1099 | 115 | 6705 | 142 | 514 | 1113 | 10,015 | |||
ISIC_2020_TRN [70] | 27,124 | 5193 | 135 | 584 | 33,036 | ||||||
Total | 1194 | 3724 | 354 | 27,153 | 26,911 | 431 | 395 | 3837 | 6805 | 628 | |
Duplicates | 327 | 1396 | 115 | 8843 | 142 | 514 | 1687 | ||||
Discarded | 29 | 12 | |||||||||
Final Selection | 867 | 2328 | 239 | 27,124 | 18,068 | 431 | 253 | 3323 | 5106 | 628 |
Metrics | Symbols | Formulae |
---|---|---|
Sensitivity | Sn | |
Specificity | Sp | |
Accuracy | Acc | |
Jaccard index | Ji | |
Dice coefficient | DSC | |
Multiclass accuracy | MAcc | |
Precision | Pr | |
Matthew correlation coefficient | MCC |
Learning Algorithm | Weight Decay | Learning Rate | Batch Size | Drop Out a |
---|---|---|---|---|
VGG (11, 16) [56] | 0.0100 | 0.0010 | 12 | 0.2500 to 0.5000 |
VGG-13 [56] | 0.0100 | 0.0006 | 24 | 0.1250 |
VGG-19 [56] | 0.0100 | 0.0007 | 24 | 0.1250 |
ResNet (18, 34, 50) [57] | 0.0100 | 0.0010 | 12 | 0.2500 to 0.5000 |
ResNet (101 and 152) [57] | 0.0100 | 0.0200 | 24 | 0.2500 to 0.5000 |
ResNeXt-50 [58] | 0.0010 | 0.0020 | 24 | 0.2500 to 0.5000 |
ResNeXt-101 [58] | 0.0100 | 0.0010 | 8 | 0.2500 to 0.5000 |
DenseNet (121, 169, 201) [59] | 0.0100 | 0.0020 | 24 | 0.250 to 0.5000 |
DenseNet-161) [59] | 0.0100 | 0.0010 | 20 | 0.250 to 0.5000 |
DPN (68, 92) [60] | 0.0100 | 0.0010 | 12 | 0.250 to 0.5000 |
DPN-98 [60] | 0.0100 | 0.0004 | 32 | 0.1250 |
DPN-107 [60] | 0.0100 | 0.0008 | 32 | 0.1250 |
DPN-131 [60] | 0.0100 | 0.0006 | 32 | 0.1250 |
ECA-ResNet-101 [61] | 0.0100 | 0.0025 b, 0.0017 c | 32 | 0.1250 |
IG-ResNeXt-101 [62] | 0.0100 | 0.0044 b, 0.0007 c | 24 d, 32 e | 0.1250 |
SWSL-ResNeXt-101 [63] | 0.0100 | 0.0001 b, 0.0006 c | 32 | 0.1250 |
Inception-ResNet-v2 [64] | 0.0100 | 0.0036 | 32 | 0.1250 |
ReXNet_1.5 [65] | 0.0100 | 0.0020 | 24 | 0.1250 |
ReXNet_2.0 [65] | 0.0100 | 0.0010 | 32 | 0.1250 |
Learning Algorithm | Segmented | Sn% | Sp% | Acc% | Ji | DSC |
---|---|---|---|---|---|---|
VGG-11 [56] | ✓ | 70.63 | 99.38 | 90.63 | 0.70 | 0.82 |
VGG-11 [56] | x | 75.00 | 98.75 | 90.31 | 0.74 | 0.85 |
VGG-13 [56] | ✓ | 63.75 | 98.75 | 92.81 | 0.63 | 0.77 |
VGG-13 [56] | x | 88.75 | 98.13 | 95.31 | 0.87 | 0.93 |
VGG-16 [56] | ✓ | 71.25 | 98.13 | 91.25 | 0.70 | 0.82 |
VGG-16 [56] | x | 66.25 | 99.38 | 93.44 | 0.66 | 0.79 |
VGG-19 [56] | ✓ | 78.75 | 98.13 | 94.06 | 0.77 | 0.87 |
VGG-19 [56] | x | 89.38 | 100.00 | 98.44 | 0.89 | 0.94 |
ResNet-18 [57] | ✓ | 44.38 | 99.38 | 93.12 | 0.44 | 0.61 |
ResNet-18 [57] | x | 75.63 | 100.00 | 89.06 | 0.76 | 0.86 |
ResNet-34 [57] | ✓ | 78.75 | 98.75 | 97.50 | 0.78 | 0.88 |
ResNet-34 [57] | x | 50.00 | 100.00 | 90.94 | 0.50 | 0.67 |
ResNet-50 [57] | ✓ | 78.75 | 98.13 | 90.63 | 0.77 | 0.87 |
ResNet-50 [57] | x | 65.63 | 100.00 | 91.56 | 0.66 | 0.79 |
ResNet-101 [57] | ✓ | 50.00 | 99.38 | 94.69 | 0.50 | 0.66 |
ResNet-101 [57] | x | 90.00 | 97.50 | 93.75 | 0.88 | 0.94 |
ResNet-152 [57] | ✓ | 68.75 | 99.38 | 91.56 | 0.68 | 0.81 |
ResNet-152 [57] | x | 89.38 | 99.38 | 94.38 | 0.89 | 0.94 |
ResNeXt-50 [58] | ✓ | 35.63 | 100.00 | 85.63 | 0.36 | 0.53 |
ResNeXt-50 [58] | x | 89.38 | 99.38 | 94.38 | 0.89 | 0.94 |
ResNeXt-101 [58] | ✓ | 80.00 | 99.38 | 95.00 | 0.80 | 0.89 |
ResNeXt-101 [58] | x | 85.00 | 99.38 | 95.00 | 0.84 | 0.92 |
DenseNet-121 [59] | ✓ | 80.00 | 99.38 | 89.69 | 0.80 | 0.89 |
DenseNet-121 [59] | x | 88.75 | 100.00 | 94.38 | 0.89 | 0.94 |
DenseNet-161 [59] | ✓ | 85.00 | 99.38 | 92.19 | 0.84 | 0.92 |
DenseNet-161 [59] | x | 91.88 | 100.00 | 95.94 | 0.92 | 0.96 |
DenseNet-169 [59] | ✓ | 70.63 | 99.38 | 85.00 | 0.70 | 0.82 |
DenseNet-169 [59] | x | 88.75 | 100.00 | 94.38 | 00.89 | 0.94 |
DenseNet-201 [59] | ✓ | 79.38 | 100.00 | 89.69 | 0.079 | 0.89 |
DenseNet-201 [59] | x | 90.63 | 99.38 | 95.00 | 0.90 | 0.95 |
DPN-68 [60] | ✓ | 69.38 | 100.00 | 84.69 | 0.69 | 0.82 |
DPN-68 [60] | x | 77.50 | 99.38 | 88.44 | 0.77 | 0.87 |
DPN-92 [60] | ✓ | 66.88 | 99.38 | 83.13 | 0.66 | 0.80 |
DPN-92 [60] | x | 70.72 | 99.38 | 84.16 | 0.70 | 0.83 |
DPN-98 [60] | ✓ | 76.25 | 98.75 | 87.50 | 0.75 | 0.86 |
DPN-98 [60] | x | 91.25 | 100.00 | 95.63 | 0.91 | 0.95 |
DPN-107 [60] | ✓ | 86.88 | 99.38 | 93.13 | 0.86 | 0.93 |
DPN-107 [60] | x | 84.38 | 99.38 | 91.88 | 0.84 | 0.91 |
DPN-131 [60] | ✓ | 72.50 | 99.38 | 85.94 | 0.72 | 0.84 |
DPN-131 [60] | x | 88.13 | 100.00 | 94.06 | 0.88 | 0.94 |
ECA-ResNet-101 [61] | ✓ | 48.75 | 100.00 | 74.38 | 0.49 | 0.66 |
ECA-ResNet-101 [61] | x | 86.88 | 100.00 | 93.44 | 0.87 | 0.93 |
IG-ResNeXt-101 [61] | ✓ | 76.25 | 98.13 | 87.19 | 0.75 | 0.86 |
IG-ResNeXt-101 [61] | x | 89.38 | 98.75 | 94.06 | 0.88 | 0.94 |
SWSL-ResNeXt-101 [63] | ✓ | 80.63 | 98.75 | 89.69 | 0.80 | 0.89 |
SWSL-ResNeXt-101 [63] | x | 85.00 | 100.00 | 92.50 | 0.85 | 0.92 |
Inception-ResNet-v2 [64] | ✓ | 75.63 | 95.63 | 85.63 | 0.72 | 0.84 |
Inception-ResNet-v2 [64] | x | 85.63 | 99.38 | 92.50 | 0.85 | 0.92 |
ReXNet_1.5 [65] | ✓ | 80.63 | 98.75 | 89.69 | 0.80 | 0.89 |
ReXNet_1.5 [65] | x | 88.75 | 100.00 | 94.38 | 0.89 | 0.94 |
ReXNet_2.0 [65] | ✓ | 51.25 | 98.75 | 75.00 | 0.51 | 0.67 |
ReXNet_2.0 [65] | x | 53.13 | 99.38 | 76.25 | 0.53 | 0.69 |
Learning Algorithm | Class | Sn% | Sp% | Acc% | MAcc% | Pr% | Ji | DSC | MCC | Weight |
---|---|---|---|---|---|---|---|---|---|---|
VGG-13 [56] | AKIEC | 49.43 | 99.43 | 98.67 | 86.53 | 56.86 | 0.36 | 0.53 | 0.52 | 0.87 |
BCC | 70.89 | 99.26 | 97.70 | 84.67 | 0.63 | 0.77 | 0.76 | |||
BKL | 69.40 | 97.68 | 96.50 | 56.62 | 0.45 | 0.62 | 0.61 | |||
DF | 59.57 | 99.92 | 99.76 | 75.68 | 0.50 | 0.67 | 0.67 | |||
MEL | 60.50 | 97.56 | 94.39 | 69.94 | 0.48 | 0.65 | 0.62 | |||
NV | 88.65 | 93.81 | 92.22 | 86.44 | 0.78 | 0.88 | 0.82 | |||
SCC | 55.74 | 99.52 | 99.06 | 54.84 | 0.38 | 0.55 | 0.55 | |||
SK | 47.06 | 99.55 | 99.17 | 43.48 | 0.29 | 0.45 | 0.45 | |||
VASC | 88.00 | 99.91 | 99.86 | 81.48 | 0.73 | 0.85 | 0.85 | |||
INDB | 95.96 | 95.52 | 95.73 | 94.97 | 0.91 | 0.95 | 0.91 | |||
VGG-19 [56] | AKIEC | 51.14 | 99.69 | 98.95 | 88.24 | 71.43 | 0.42 | 0.60 | 0.60 | 0.88 |
BCC | 75.43 | 99.38 | 98.07 | 87.64 | 0.68 | 0.81 | 0.80 | |||
BKL | 70.02 | 98.36 | 97.18 | 65.08 | 0.51 | 0.67 | 0.66 | |||
DF | 63.83 | 99.91 | 99.77 | 75.00 | 0.53 | 0.69 | 0.69 | |||
MEL | 63.30 | 97.65 | 94.71 | 71.61 | 0.51 | 0.67 | 0.64 | |||
NV | 90.46 | 94.54 | 93.28 | 88.06 | 0.81 | 0.89 | 0.84 | |||
SCC | 65.57 | 99.33 | 98.98 | 50.96 | 0.40 | 0.57 | 0.57 | |||
SK | 48.24 | 99.59 | 99.22 | 46.59 | 0.31 | 0.47 | 0.47 | |||
VASC | 84.00 | 99.96 | 99.89 | 89.36 | 0.76 | 0.87 | 0.87 | |||
INDB | 97.02 | 95.89 | 96.42 | 95.42 | 0.93 | 0.96 | 0.93 | |||
ResNet-101 [57] | AKIEC | 60.80 | 99.69 | 99.10 | 90.42 | 74.83 | 0.50 | 0.67 | 0.67 | 0.90 |
BCC | 85.29 | 99.42 | 98.65 | 89.49 | 0.78 | 0.87 | 0.87 | |||
BKL | 79.06 | 98.47 | 97.66 | 69.24 | 0.59 | 0.74 | 0.73 | |||
DF | 76.60 | 99.97 | 99.87 | 90.00 | 0.71 | 0.83 | 0.83 | |||
MEL | 65.30 | 98.44 | 95.61 | 79.73 | 0.56 | 0.72 | 0.70 | |||
NV | 92.24 | 95.32 | 94.37 | 89.76 | 0.83 | 0.91 | 0.87 | |||
SCC | 63.93 | 99.74 | 99.37 | 72.22 | 0.51 | 0.68 | 0.68 | |||
SK | 41.18 | 99.84 | 99.41 | 64.81 | 0.34 | 0.50 | 0.51 | |||
VASC | 92.00 | 99.98 | 99.95 | 95.83 | 0.88 | 0.94 | 0.94 | |||
INDB | 97.84 | 96.00 | 96.86 | 95.57 | 0.94 | 0.97 | 0.94 | |||
ResNet-152 [57] | AKIEC | 62.50 | 99.75 | 99.19 | 90.29 | 79.14 | 0.54 | 0.70 | 0.70 | 0.90 |
BCC | 86.23 | 99.33 | 98.61 | 88.16 | 0.77 | 0.87 | 0.86 | |||
BKL | 76.18 | 99.01 | 98.06 | 76.97 | 0.62 | 0.77 | 0.76 | |||
DF | 85.11 | 99.91 | 99.85 | 80.00 | 0.70 | 0.82 | 0.82 | |||
MEL | 67.10 | 98.56 | 95.86 | 81.33 | 0.58 | 0.74 | 0.72 | |||
NV | 91.40 | 95.85 | 94.48 | 90.75 | 0.84 | 0.91 | 0.87 | |||
SCC | 71.31 | 99.76 | 99.46 | 75.65 | 0.58 | 0.73 | 0.73 | |||
SK | 45.88 | 99.82 | 99.43 | 65.00 | 0.37 | 0.54 | 0.54 | |||
VASC | 94.00 | 99.98 | 99.96 | 95.92 | 0.90 | 0.95 | 0.95 | |||
INDB | 97.53 | 94.03 | 95.67 | 93.52 | 0.91 | 0.95 | 0.91 | |||
ResNeXt-50 [58] | AKIEC | 64.77 | 99.75 | 99.22 | 90.35 | 79.72 | 0.56 | 0.71 | 0.71 | 0.90 |
BCC | 85.76 | 99.43 | 98.68 | 89.69 | 0.78 | 0.88 | 0.87 | |||
BKL | 76.18 | 98.78 | 97.83 | 73.03 | 0.59 | 0.75 | 0.73 | |||
DF | 85.11 | 99.90 | 99.84 | 76.92 | 0.68 | 0.81 | 0.81 | |||
MEL | 65.30 | 98.73 | 95.86 | 82.76 | 0.57 | 0.73 | 0.71 | |||
NV | 92.43 | 95.19 | 94.34 | 89.52 | 0.83 | 0.91 | 0.87 | |||
SCC | 74.59 | 99.74 | 99.48 | 75.21 | 0.60 | 0.75 | 0.75 | |||
SK | 40.00 | 99.82 | 99.38 | 61.82 | 0.32 | 0.49 | 0.49 | |||
VASC | 92.00 | 99.97 | 99.93 | 92.00 | 0.85 | 0.92 | 0.92 | |||
INDB | 97.72 | 95.40 | 96.49 | 94.94 | 0.93 | 0.96 | 0.93 | |||
DenseNet-121 [59] | AKIEC | 28.41 | 99.62 | 98.54 | 86.72 | 53.19 | 0.23 | 0.37 | 0.38 | 0.87 |
BCC | 83.41 | 97.61 | 96.83 | 66.88 | 0.59 | 0.74 | 0.73 | |||
BKL | 59.55 | 98.06 | 96.45 | 57.20 | 0.41 | 0.58 | 0.57 | |||
DF | 10.64 | 99.97 | 99.61 | 62.50 | 0.10 | 0.18 | 0.26 | |||
MEL | 58.80 | 98.07 | 94.71 | 74.06 | 0.49 | 0.66 | 0.63 | |||
NV | 89.84 | 94.75 | 93.24 | 88.39 | 0.80 | 0.89 | 0.84 | |||
SCC | 12.30 | 99.85 | 98.94 | 46.88 | 0.11 | 0.19 | 0.24 | |||
SK | 0.00 | 99.92 | 99.19 | 0.00 | 0.00 | 0.00 | 0.00 | |||
VASC | 52.00 | 99.73 | 99.53 | 45.61 | 0.32 | 0.49 | 0.48 | |||
INDB | 98.43 | 94.60 | 96.39 | 94.15 | 0.93 | 0.96 | 0.94 | |||
DenseNet-161 [59] | AKIEC | 13.07 | 99.70 | 98.40 | 80.21 | 40.35 | 0.11 | 0.20 | 0.22 | 0.80 |
BCC | 80.13 | 95.27 | 94.44 | 49.52 | 0.44 | 0.61 | 0.60 | |||
BKL | 30.60 | 98.52 | 95.69 | 47.45 | 0.23 | 0.37 | 0.36 | |||
DF | 0.00 | 99.05 | 98.66 | 0.00 | 0.00 | 0.00 | 0.00 | |||
MEL | 35.50 | 98.22 | 92.85 | 65.14 | 0.30 | 0.46 | 0.45 | |||
NV | 87.65 | 90.36 | 89.52 | 80.17 | 0.72 | 0.84 | 0.76 | |||
SCC | 0.00 | 100.00 | 98.95 | 0.00 | 0.00 | 0.00 | 0.00 | |||
SK | 0.00 | 100.00 | 99.27 | 0.00 | 0.00 | 0.00 | 0.00 | |||
VASC | 12.00 | 99.43 | 99.06 | 8.33 | 0.05 | 0.10 | 0.10 | |||
INDB | 94.43 | 92.84 | 93.58 | 92.09 | 0.87 | 0.93 | 0.87 | |||
DenseNet-169 [59] | AKIEC | 51.14 | 99.65 | 98.92 | 89.30 | 69.23 | 0.42 | 0.59 | 0.59 | 0.89 |
BCC | 79.34 | 99.44 | 98.34 | 89.10 | 0.72 | 0.84 | 0.83 | |||
BKL | 75.56 | 98.19 | 97.25 | 64.56 | 0.53 | 0.70 | 0.68 | |||
DF | 80.85 | 99.89 | 99.81 | 74.51 | 0.63 | 0.78 | 0.78 | |||
MEL | 66.70 | 97.80 | 95.13 | 73.95 | 0.54 | 0.70 | 0.68 | |||
NV | 90.46 | 95.46 | 93.92 | 89.86 | 0.82 | 0.90 | 0.86 | |||
SCC | 52.46 | 99.75 | 99.25 | 68.82 | 0.42 | 0.60 | 0.60 | |||
SK | 45.88 | 99.79 | 99.40 | 61.90 | 0.36 | 0.53 | 0.53 | |||
VASC | 94.00 | 99.93 | 99.91 | 85.45 | 0.81 | 0.90 | 0.90 | |||
INDB | 97.81 | 95.66 | 96.67 | 95.22 | 0.93 | 0.96 | 0.93 | |||
DenseNet-201 [59] | AKIEC | 66.48 | 99.70 | 99.20 | 90.28 | 77.48 | 0.56 | 0.72 | 0.71 | 0.90 |
BCC | 86.23 | 99.45 | 98.72 | 90.03 | 0.79 | 0.88 | 0.87 | |||
BKL | 77.82 | 98.69 | 97.82 | 72.19 | 0.60 | 0.75 | 0.74 | |||
DF | 85.11 | 99.97 | 99.91 | 93.02 | 0.80 | 0.89 | 0.89 | |||
MEL | 69.80 | 98.14 | 95.71 | 77.81 | 0.58 | 0.74 | 0.71 | |||
NV | 91.40 | 95.78 | 94.43 | 90.60 | 0.83 | 0.91 | 0.87 | |||
SCC | 72.13 | 99.85 | 99.56 | 83.81 | 0.63 | 0.78 | 0.78 | |||
SK | 43.53 | 99.79 | 99.38 | 60.66 | 0.34 | 0.51 | 0.51 | |||
VASC | 88.00 | 99.98 | 99.93 | 95.65 | 0.85 | 0.92 | 0.92 | |||
INDB | 97.97 | 96.05 | 96.95 | 95.63 | 0.94 | 0.97 | 0.94 | |||
DPN-98 [60] | AKIEC | 59.09 | 99.70 | 99.09 | 90.36 | 75.36 | 0.50 | 0.66 | 0.66 | 0.90 |
BCC | 85.76 | 99.47 | 98.71 | 90.28 | 0.79 | 0.88 | 0.87 | |||
BKL | 77.21 | 98.76 | 97.86 | 73.01 | 0.60 | 0.75 | 0.74 | |||
DF | 74.47 | 99.93 | 99.83 | 81.40 | 0.64 | 0.78 | 0.78 | |||
MEL | 69.60 | 98.31 | 95.85 | 79.45 | 0.59 | 0.74 | 0.72 | |||
NV | 91.51 | 95.67 | 94.39 | 90.38 | 0.83 | 0.91 | 0.87 | |||
SCC | 69.67 | 99.68 | 99.37 | 69.67 | 0.53 | 0.70 | 0.69 | |||
SK | 32.94 | 99.82 | 99.33 | 57.14 | 0.26 | 0.42 | 0.43 | |||
VASC | 94.00 | 99.94 | 99.91 | 87.04 | 0.82 | 0.90 | 0.90 | |||
INDB | 97.57 | 95.32 | 96.38 | 94.85 | 0.93 | 0.96 | 0.93 | |||
DPN-131 [60] | AKIEC | 59.66 | 99.74 | 99.13 | 90.60 | 77.78 | 0.51 | 0.68 | 0.68 | 0.91 |
BCC | 87.17 | 99.42 | 98.75 | 89.69 | 0.79 | 0.88 | 0.88 | |||
BKL | 78.03 | 98.91 | 98.04 | 75.70 | 0.62 | 0.77 | 0.76 | |||
DF | 85.11 | 99.95 | 99.89 | 86.96 | 0.75 | 0.86 | 0.86 | |||
MEL | 69.70 | 98.33 | 95.88 | 79.66 | 0.59 | 0.74 | 0.72 | |||
NV | 92.46 | 95.32 | 94.44 | 89.79 | 0.84 | 0.91 | 0.87 | |||
SCC | 75.41 | 99.72 | 99.47 | 74.19 | 0.60 | 0.75 | 0.75 | |||
SK | 38.82 | 99.78 | 99.34 | 56.90 | 0.30 | 0.46 | 0.47 | |||
VASC | 90.00 | 99.95 | 99.91 | 88.24 | 0.80 | 0.89 | 0.89 | |||
INDB | 96.91 | 95.87 | 96.36 | 95.40 | 0.93 | 0.96 | 0.93 | |||
ECA-ResNet-101 [61] | AKIEC | 64.20 | 99.68 | 99.14 | 90.50 | 75.33 | 0.53 | 0.69 | 0.69 | 0.90 |
BCC | 84.19 | 99.52 | 98.68 | 91.03 | 0.78 | 0.87 | 0.87 | |||
BKL | 78.85 | 98.74 | 97.91 | 73.14 | 0.61 | 0.76 | 0.75 | |||
DF | 80.85 | 99.93 | 99.85 | 82.61 | 0.69 | 0.82 | 0.82 | |||
MEL | 72.20 | 97.88 | 95.68 | 76.16 | 0.59 | 0.74 | 0.72 | |||
NV | 90.82 | 96.26 | 94.59 | 91.53 | 0.84 | 0.91 | 0.87 | |||
SCC | 67.21 | 99.77 | 99.43 | 75.23 | 0.55 | 0.71 | 0.71 | |||
SK | 40.00 | 99.78 | 99.35 | 57.63 | 0.31 | 0.47 | 0.48 | |||
VASC | 96.00 | 99.96 | 99.94 | 90.57 | 0.87 | 0.93 | 0.93 | |||
INDB | 97.57 | 95.39 | 96.41 | 94.92 | 0.93 | 0.96 | 0.93 | |||
IG-ResNeXt-101 [62] | AKIEC | 70.45 | 99.77 | 99.32 | 91.80 | 82.12 | 0.61 | 0.76 | 0.76 | 0.92 |
BCC | 89.83 | 99.46 | 98.93 | 90.54 | 0.82 | 0.90 | 0.90 | |||
BKL | 81.72 | 99.05 | 98.33 | 78.97 | 0.67 | 0.80 | 0.79 | |||
DF | 78.72 | 99.94 | 99.85 | 84.05 | 0.69 | 0.81 | 0.81 | |||
MEL | 77.00 | 98.13 | 96.32 | 79.38 | 0.64 | 0.78 | 0.76 | |||
NV | 91.68 | 96.68 | 95.14 | 92.48 | 0.85 | 0.92 | 0.89 | |||
SCC | 77.05 | 99.87 | 99.63 | 86.24 | 0.69 | 0.81 | 0.81 | |||
SK | 44.71 | 99.72 | 99.31 | 53.52 | 0.32 | 0.49 | 0.49 | |||
VASC | 88.00 | 100.00 | 99.95 | 100.00 | 0.88 | 0.94 | 0.49 | |||
INDB | 97.61 | 96.11 | 96.81 | 95.68 | 0.93 | 0.97 | 0.94 | |||
SWSL-ResNeXt-101 [63] | AKIEC | 69.89 | 99.77 | 99.32 | 91.46 | 82.55 | 0.61 | 0.76 | 0.76 | 0.91 |
BCC | 89.67 | 99.56 | 99.01 | 92.12 | 0.83 | 0.91 | 0.90 | |||
BKL | 81.11 | 99.02 | 98.27 | 78.22 | 0.66 | 0.80 | 0.79 | |||
DF | 95.74 | 99.85 | 99.83 | 71.43 | 0.69 | 0.82 | 0.83 | |||
MEL | 75.30 | 98.01 | 96.07 | 78.03 | 0.62 | 0.77 | 0.75 | |||
NV | 90.96 | 96.82 | 95.01 | 92.71 | 0.85 | 0.92 | 0.88 | |||
SCC | 79.51 | 99.80 | 99.59 | 80.83 | 0.67 | 0.80 | 0.80 | |||
SK | 42.35 | 99.70 | 99.28 | 50.70 | 0.30 | 0.46 | 0.46 | |||
VASC | 88.00 | 99.97 | 99.91 | 91.67 | 0.81 | 0.90 | 0.90 | |||
INDB | 97.59 | 95.76 | 96.62 | 95.31 | 0.93 | 0.96 | 0.93 | |||
Inception-ResNet-v2 [64] | AKIEC | 43.18 | 99.83 | 98.97 | 87.74 | 79.17 | 0.39 | 0.56 | 0.58 | 0.88 |
BCC | 71.83 | 99.49 | 97.98 | 89.13 | 0.66 | 0.80 | 0.79 | |||
BKL | 72.28 | 98.46 | 97.37 | 67.18 | 0.53 | 0.70 | 0.68 | |||
DF | 80.85 | 99.91 | 99.84 | 79.17 | 0.67 | 0.80 | 0.80 | |||
MEL | 62.10 | 98.35 | 95.25 | 77.92 | 0.53 | 0.69 | 0.67 | |||
NV | 91.04 | 92.83 | 92.28 | 84.96 | 0.78 | 0.88 | 0.82 | |||
SCC | 59.02 | 99.79 | 99.37 | 75.00 | 0.49 | 0.66 | 0.66 | |||
SK | 30.59 | 99.78 | 99.27 | 50.00 | 0.23 | 0.38 | 0.39 | |||
VASC | 88.00 | 99.90 | 99.85 | 78.57 | 0.71 | 0.83 | 0.83 | |||
INDB | 96.51 | 94.26 | 95.31 | 93.69 | 0.91 | 0.95 | 0.91 | |||
ReXNet_1.5 [65] | AKIEC | 64.77 | 99.51 | 98.99 | 89.20 | 67.06 | 0.49 | 0.66 | 0.65 | 0.89 |
BCC | 79.66 | 99.40 | 98.32 | 88.52 | 0.72 | 0.84 | 0.83 | |||
BKL | 71.46 | 98.76 | 97.62 | 71.46 | 0.56 | 0.71 | 0.70 | |||
DF | 68.09 | 99.97 | 99.84 | 88.89 | 0.63 | 0.77 | 0.78 | |||
MEL | 63.60 | 98.12 | 95.16 | 75.99 | 0.53 | 0.69 | 0.67 | |||
NV | 91.37 | 94.23 | 93.35 | 87.57 | 0.81 | 0.89 | 0.85 | |||
SCC | 68.85 | 99.81 | 99.49 | 79.25 | 0.58 | 0.74 | 0.74 | |||
SK | 34.12 | 99.89 | 99.41 | 60.05 | 0.30 | 0.46 | 0.48 | |||
VASC | 88.00 | 99.95 | 99.90 | 88.00 | 0.79 | 0.88 | 0.88 | |||
INDB | 97.42 | 95.35 | 96.32 | 94.88 | 0.93 | 0.96 | 0.93 | |||
SMVE (Ours) | AKIEC | 70.45 | 99.83 | 99.38 | 92.33 | 86.11 | 0.63 | 0.78 | 0.78 | |
BCC | 90.61 | 99.56 | 99.07 | 92.34 | 0.84 | 0.91 | 0.91 | |||
BKL | 80.70 | 99.20 | 98.43 | 81.54 | 0.68 | 0.81 | 0.80 | |||
DF | 89.36 | 99.96 | 99.91 | 89.36 | 0.81 | 0.89 | 0.89 | |||
MEL | 74.10 | 98.63 | 96.53 | 83.54 | 0.65 | 0.79 | 0.77 | |||
NV | 93.16 | 96.47 | 95.45 | 92.16 | 0.86 | 0.93 | 0.89 | |||
SCC | 81.15 | 99.89 | 99.69 | 88.39 | 0.73 | 0.85 | 0.85 | |||
SK | 42.35 | 99.79 | 99.37 | 60.00 | 0.33 | 0.50 | 0.50 | |||
VASC | 94.00 | 100.00 | 99.97 | 100.00 | 0.94 | 0.97 | 0.97 | |||
INDB | 98.10 | 95.73 | 96.84 | 95.30 | 0.94 | 0.97 | 0.94 | |||
WMVE (Ours) | AKIEC | 73.30 | 99.83 | 99.43 | 92.84 | 87.16 | 0.66 | 0.80 | 0.80 | |
BCC | 91.24 | 99.57 | 99.12 | 92.54 | 0.85 | 0.92 | 0.91 | |||
BKL | 82.75 | 99.29 | 98.60 | 83.61 | 0.71 | 0.83 | 0.82 | |||
DF | 93.62 | 99.96 | 99.93 | 89.80 | 0.85 | 0.92 | 0.92 | |||
MEL | 76.90 | 98.63 | 96.77 | 84.04 | 0.67 | 0.80 | 0.79 | |||
NV | 93.18 | 96.88 | 95.74 | 93.00 | 0.87 | 0.93 | 0.90 | |||
SCC | 82.79 | 99.88 | 99.70 | 87.83 | 0.74 | 0.85 | 0.85 | |||
SK | 41.18 | 99.78 | 99.35 | 57.38 | 0.32 | 0.48 | 0.48 | |||
VASC | 92.00 | 99.98 | 99.95 | 95.83 | 0.88 | 0.94 | 0.94 | |||
INDB | 98.26 | 96.03 | 97.08 | 95.63 | 0.94 | 0.97 | 0.94 |
Reference | Algorithm | No of Classes | Data | Avg Sn (%) | Avg Sp (%) | Avg Acc (%) | MAcc (%) | Avg Pr (%) | Avg Ji | Avg DSC | MCC |
---|---|---|---|---|---|---|---|---|---|---|---|
[40] | Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 | 7 | ISIC_2018 | 88.44 | |||||||
[52] | EfficientNetB0, EfficientNetB1 and SeReNeXt-50 | 7 | ISIC_2018 | 96.30 | 86.20 | 91.30 | |||||
[75] | Kernel Extreme Learning Machine, ResNet101 and DenseNet201 | 7 | HAM_10000 | 90.20 | 90.67 | ||||||
[76] | EW-FCM and EfficientNet-B0 | 8 | HAM_10000 | 87.23 | 97.87 | 87.23 | |||||
[77] | GoogleNet and SVM | 8 | ISIC_2019 | 79.80 | 97.00 | 94.92 | 80.36 | ||||
[78] | KNN and SVM | 8 | ISIC_2019 | 66.45 | 97.85 | 97.35 | 91.61 | ||||
[86] | InceptionResNetV2 and ResNeXt101 | 7 | ISIC_2019 | 85.00 | 92.83 | 83.00 | 0.84 | ||||
[87] | EfficientNets, SENet, and ResNeXt WSL | 9 | ISIC_2019 | 74.20 | |||||||
[88] | DenseNet201 and MobileNetV2 | ISIC_2018, ISIC_2019 | 94.50 | ||||||||
[89] | VGG16, VGG19, ResNet50, ResNet101, ResNet152, Xception, and MobileNet | 7 | HAM_10000 | 83.69 | |||||||
[90] | AlexNet, ResNet18, ResNet50, ResNet101, ResNet152, SENet154, SqueezeNet1_0, VGG13BN and VGG16BN | 7 | ISIC_2018, ISIC_2019 | 48.30 | 97.70 | 92.40 | 0.49 | ||||
[91] | MobileNetV2 and GoogLeNet | 7 | HAM_10000 | 65.60 | 95.40 | 83.50 | 76.60 | 0.69 | 0.66 | ||
SMVE (Ours) | IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and DPN-131 | 10 | ISIC_2016, ISIC_2017, ISIC_2018, ISIC_2019, ISIC_2020 | 81.40 | 98.91 | 98.46 | 92.33 | 86.87 | 0.74 | 0.84 | 0.83 |
WMVE (Ours) | IG-ResNeXt-101, SWSL-ResNeXt-101, ECA-ResNet-101, and DPN-131 | 10 | ISIC_2016, ISIC_2017, ISIC_2018, ISIC_2019, ISIC_2020 | 82.52 | 99.00 | 98.54 | 92.84 | 86.68 | 0.75 | 0.84 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuboyejo, D.A.; Olugbara, O.O. Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning. Algorithms 2022, 15, 443. https://doi.org/10.3390/a15120443
Okuboyejo DA, Olugbara OO. Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning. Algorithms. 2022; 15(12):443. https://doi.org/10.3390/a15120443
Chicago/Turabian StyleOkuboyejo, Damilola A., and Oludayo O. Olugbara. 2022. "Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning" Algorithms 15, no. 12: 443. https://doi.org/10.3390/a15120443
APA StyleOkuboyejo, D. A., & Olugbara, O. O. (2022). Classification of Skin Lesions Using Weighted Majority Voting Ensemble Deep Learning. Algorithms, 15(12), 443. https://doi.org/10.3390/a15120443