Thermal Conductivity of Low-GWP Refrigerants Modeling with Multi-Object Optimization
Abstract
:1. Introduction
2. Methods
2.1. Genetic Method
2.2. NSGAII Method
- Random initialization of the base population;
- Selection of the initial population through a process of non-dominance;
- Application of crowding distance for subsequent selection of individuals;
- Selection of individuals based on crowding distance;
- Application of genetic algorithm and application of mutation and crossover;
- Recombination and population selection for building the next generation.
- 1.
- Average Absolute Relative Deviation
- 2.
- Coefficient of Determination
- Number of generations: 100;
- Crossover probability: 0.9;
- Mutation probability: 1.
3. Results and Discussion
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neubauer, S.C. Global Warming Potential Is Not an Ecosystem Property. Ecosystems 2021, 24, 2079–2089. [Google Scholar] [CrossRef]
- McLinden, M.O.; Huber, M.L. (R) Evolution of Refrigerants. J. Chem. Eng. Data 2020, 65, 4176–4193. [Google Scholar] [CrossRef] [PubMed]
- McLinden, M.O.; Brown, J.S.; Brignoli, R.; Kazakov, A.F.; Domanski, P.A. Limited Options for Low-Global-Warming-Potential Refrigerants. Nat. Commun. 2017, 8, 14476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domanski, P.A.; Brignoli, R.; Brown, J.S.; Kazakov, A.F.; McLinden, M.O. Low-GWP Refrigerants for Medium and High-Pressure Applications. Int. J. Refrig. 2017, 84, 198–209. [Google Scholar] [CrossRef]
- Bobbo, S.; Di Nicola, G.; Zilio, C.; Brown, J.S.; Fedele, L. Low GWP Halocarbon Refrigerants: A Review of Thermophysical Properties. Int. J. Refrig. 2018, 90, 181–201. [Google Scholar] [CrossRef]
- Poling, B.; Prausnitz, J.; Connell, J.O. The Properties of Gases and Liquids, 5th ed.; McGraw Hill Professional; McGraw-Hill Education: New York, NY, USA, 2000; ISBN 9780071499996. [Google Scholar]
- Huber, M.L. Models for Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP V10.0; National Institute of Standards and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 2018.
- Kang, K.; Li, X.; Gu, Y.; Wang, X. Thermal Conductivity Prediction of Pure Refrigerants and Mixtures Based on Entropy-Scaling Concept. J. Mol. Liq. 2022, 368, 120568. [Google Scholar] [CrossRef]
- Yang, X.; Kim, D.; May, E.F.; Bell, I.H. Entropy Scaling of Thermal Conductivity: Application to Refrigerants and Their Mixtures. Ind. Eng. Chem. Res. 2021, 60, 13052–13070. [Google Scholar] [CrossRef]
- Fouad, W.A.; Vega, L.F. Transport Properties of HFC and HFO Based Refrigerants Using an Excess Entropy Scaling Approach. J. Supercrit. Fluids 2018, 131, 106–116. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Yang, X.; Yang, Z.; Duan, Y. Modeling the Thermal Conductivity of Hydrofluorocarbons, Hydrofluoroolefins and Their Binary Mixtures Using Residual Entropy Scaling and Cubic-plus-Association Equation of State. J. Mol. Liq. 2021, 330, 115612. [Google Scholar] [CrossRef]
- Khosharay, S.; Khosharay, K.; Di Nicola, G.; Pierantozzi, M. Modelling Investigation on the Thermal Conductivity of Pure Liquid, Vapour, and Supercritical Refrigerants and Their Mixtures by Using Heyen EOS. Phys. Chem. Liq. 2018, 56, 124–140. [Google Scholar] [CrossRef]
- Niksirat, M.; Aeenjan, F.; Khosharay, S. Introducing Hydrogen Bonding Contribution to the Patel-Teja Thermal Conductivity Equation of State for Hydrochlorofluorocarbons, Hydrofluorocarbons and Hydrofluoroolefins. J. Mol. Liq. 2022, 351, 118631. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Zheng, X.; Li, Q. Modeling Thermal Conductivity of Liquid Hydrofluorocarbon, Hydrofluoroolefin and Hydrochlorofluoroolefin Refrigerants. Int. J. Refrig. 2022, 140, 139–149. [Google Scholar] [CrossRef]
- Di Nicola, G.; Coccia, G.; Tomassetti, S. A Modified Kardos Equation for the Thermal Conductivity of Refrigerants. J. Theor. Comput. Chem. 2018, 17, 1850012. [Google Scholar] [CrossRef]
- Yang, S.; Tian, J.; Jiang, H. Corresponding State Principle Based Correlation for the Thermal Conductivity of Saturated Refrigerants Liquids from Ttr to 0.90 Tc. Fluid Phase Equilibria 2020, 509, 112459. [Google Scholar] [CrossRef]
- Latini, G.; Sotte, M. Refrigerants of the Methane, Ethane and Propane Series: Thermal Conductivity Calculation along the Saturation Line. Int. J. Air-Cond. Refrig. 2011, 19, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Latini, G.; Sotte, M. Thermal Conductivity of Refrigerants in the Liquid State: A Comparison of Estimation Methods. Int. J. Refrig. 2012, 35, 1377–1383. [Google Scholar] [CrossRef]
- Di Nicola, G.; Ciarrocchi, E.; Coccia, G.; Pierantozzi, M. Correlations of Thermal Conductivity for Liquid Refrigerants at Atmospheric Pressure or near Saturation. Int. J. Refrig. 2014, 45, 168–176. [Google Scholar]
- Tomassetti, S.; Coccia, G.; Pierantozzi, M.; Di Nicola, G. Correlations for Liquid Thermal Conductivity of Low GWP Refrigerants in the Reduced Temperature Range 0.4 to 0.9 from Saturation Line to 70 MPa. Int. J. Refrig. 2020, 117, 358–368. [Google Scholar] [CrossRef]
- Rykov, S.V.; Kudryavtseva, I.V. Heat Conductivity of Liquid Hydrofluoroolefins and Hydrochlorofluoroolefins on the Line of Saturation. Russ. J. Phys. Chem. A 2022, 96, 2098–2104. [Google Scholar] [CrossRef]
- Andradóttir, S. An Overview of Simulation Optimization via Random Search. Handb. Oper. Res. Manag. Sci. 2006, 13, 617–631. [Google Scholar]
- Abdollahzadeh, B.; Gharehchopogh, F.S. A Multi-Objective Optimization Algorithm for Feature Selection Problems. Eng. Comput. 2022, 38, 1845–1863. [Google Scholar] [CrossRef]
- Khodadadi, N.; Soleimanian Gharehchopogh, F.; Mirjalili, S. MOAVOA: A New Multi-Objective Artificial Vultures Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20791–20829. [Google Scholar] [CrossRef]
- Keshtegar, B.; Hao, P.; Wang, Y.; Li, Y. Optimum Design of Aircraft Panels Based on Adaptive Dynamic Harmony Search. Thin-Walled Struct. 2017, 118, 37–45. [Google Scholar] [CrossRef]
- Keshtegar, B.; Hao, P.; Wang, Y.; Hu, Q. An Adaptive Response Surface Method and Gaussian Global-Best Harmony Search Algorithm for Optimization of Aircraft Stiffened Panels. Appl. Soft Comput. 2018, 66, 196–207. [Google Scholar] [CrossRef]
- Rangaiah, G.P.; Feng, Z.; Hoadley, A.F. Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review. Processes 2020, 8, 508. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Cohon, J.L. Multiobjective Programming and Planning; Courier Corporation: Chelmsford, MA, USA, 1978; p. 333. [Google Scholar]
- Limleamthong, P.; Guillén-Gosálbez, G. Combined Use of Bilevel Programming and Multi-Objective Optimization for Rigorous Analysis of Pareto Fronts in Sustainability Studies: Application to the Redesign of the UK Electricity Mix. Comput. Aided Chem. Eng. 2018, 43, 1099–1104. [Google Scholar] [CrossRef]
- Wang, Z.; Rangaiah, G.P. Application and Analysis of Methods for Selecting an Optimal Solution from the Pareto-Optimal Front Obtained by Multiobjective Optimization. Ind. Eng. Chem. Res. 2017, 56, 560–574. [Google Scholar] [CrossRef]
- Wang, Z.; Rangaiah, G.P.; Wang, X. Preference Ranking on the Basis of Ideal-Average Distance Method for Multi-Criteria Decision-Making. Ind. Eng. Chem. Res. 2021, 60, 11216–11230. [Google Scholar] [CrossRef]
- Godberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. In Machine Learning Reading, Mass; Addison-Wesley Pub. Co.: Boston, MA, USA, 1998; Volume 19, pp. 117–119. [Google Scholar]
- Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence| IT Press EBooks|IEEE Xplore. Available online: https://ieeexplore.ieee.org/book/6267401 (accessed on 16 September 2022).
- Martínez-Vargas, A.; Domínguez-Guerrero, J.; Andrade, Á.G.; Sepúlveda, R.; Montiel-Ross, O. Application of NSGA-II Algorithm to the Spectrum Assignment Problem in Spectrum Sharing Networks. Appl. Soft Comput. 2016, 39, 188–198. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Bhattacharya, R. Applying Modified NSGA-II for Bi-Objective Supply Chain Problem. J. Intell. Manuf. 2011, 24, 707–716. [Google Scholar] [CrossRef]
- Soyel, H.; Tekguc, U.; Demirel, H. Application of NSGA-II to Feature Selection for Facial Expression Recognition. Comput. Electr. Eng. 2011, 37, 1232–1240. [Google Scholar] [CrossRef]
- ModeFRONTIER|Simulation Process Automation and Design Optimization. Available online: https://engineering.esteco.com/modefrontier/ (accessed on 5 December 2022).
- Sobol’, I.M.; Levitan, Y.L. A Pseudo-Random Number Generator for Personal Computers. Comput. Math. Appl. 1999, 37, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Gómez, A.N.; Pronzato, L.; Rendas, M.-J. Incremental Space-Filling Design Based on Coverings and Spacings: Improving upon Low Discrepancy Sequences. J. Stat. Theory Pract. 2021, 15, 77. [Google Scholar] [CrossRef]
- Shirazi, A.; Najafi, B.; Aminyavari, M.; Rinaldi, F.; Taylor, R.A. Thermal–Economic–Environmental Analysis and Multi-Objective Optimization of an Ice Thermal Energy Storage System for Gas Turbine Cycle Inlet Air Cooling. Energy 2014, 69, 212–226. [Google Scholar] [CrossRef]
- Sanaye, S.; Modarrespoor, D. Thermal-Economic Multiobjective Optimization of Heat Pipe Heat Exchanger for Energy Recovery in HVAC Applications Using Genetic Algorithm. Therm. Sci. 2014, 18, 375–391. [Google Scholar] [CrossRef]
- Martínez-Morales, J.D.; Pineda-Rico, U.; Stevens-Navarro, E. Performance Comparison between MADM Algorithms for Vertical Handoff in 4G Networks. In Proceedings of the Program and Abstract Book—2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2010, Tuxtla Gutierrez, Mexico, 8–10 September 2010; pp. 309–314. [Google Scholar] [CrossRef]
- Ouattara, A.; Pibouleau, L.; Azzaro-Pantel, C.; Domenech, S. Economic and Environmental Impacts of the Energy Source for the Utility Production System in the HDA Process. Energy Convers. Manag. 2013, 74, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Triantaphyllou, E. Ranking Irregularities When Evaluating Alternatives by Using Some ELECTRE Methods. Omega 2008, 36, 45–63. [Google Scholar] [CrossRef]
- Thibault, J. Net Flow and Rough Sets: Two Methods for Ranking the Pareto Domain. In Multi-Objective Optimization: Techniques and Applications in Chemical Engineering; World Scientific Publishing Company: Singapore, 2017; pp. 199–246. [Google Scholar] [CrossRef]
Type of Algorithm | AARD% (0.5) | R2 (0.5) | AARD% (0.8) | R2 (0.2) |
---|---|---|---|---|
TOPSIS [41] | 1.40733 | 0.991706 | 1.40660 | 0.991193 |
LINMAP [42] | 1.40733 | 0.991706 | 1.40660 | 0.991193 |
VIKOR [43] | 1.40927 | 0.991963 | 1.40833 | 0.991927 |
FUCA [44] | 1.4073 | 0.991269 | 1.40660 | 0.991193 |
GRA [31] | 1.40927 | 0.991963 | 1.40927 | 0.991963 |
SAW [43] | 1.40660 | 0.991193 | 1.40660 | 0.991193 |
MEW [43] | 1.40660 | 0.991193 | 1.40660 | 0.991193 |
ELCTRE II [45] | 1.4073 | 0.991269 | 1.40678 | 0.991207 |
ELECTRE III [31] | 1.40927 | 0.991963 | 1.40927 | 0.991963 |
NFM [46] | 1.40927 | 0.991963 | 1.40927 | 0.991963 |
Parameter | Original Parameters | New Parameters | Difference | Rate of Change |
---|---|---|---|---|
0.43693 | 0.2885 | 0.14843 | 34% | |
−0.28725 | −0.43751 | 0.15026 | −52% | |
0.00372 | 0.0055 | −0.00178 | −48% | |
0.26967 | 0.3000 | −0.03033 | −11% | |
0.36436 | 0.25228 | 0.11208 | 31% | |
−0.00135 | −0.0023 | 0.00095 | −70% | |
0.05484 | 0.0805 | −0.02566 | −47% | |
0.88049 | 0.76287 | 0.11762 | 13% |
Statistical Parameter | Method Used in Tomassetti et al. [20] | New Method (NSGAII) |
---|---|---|
AARD% | 1.45 | 1.41 |
R2 | 0.9922 | 0.9911 |
RMSE | 0.00411 | 0.00406 |
This Work | Original Results [20] | REFPROP 10.0 | |||||
---|---|---|---|---|---|---|---|
Fluid | Point Numbers | AARD% | MARD% | AARD% | MARD% | AARD% | MARD% |
R1224yd(Z) | 53 | 2.62 | 5.11 | 1.45 | 7.34 | 6.36 | 8.86 |
R1233zd(E) | 1132 | 1.10 | 3.28 | 1.15 | 3.39 | 0.34 | 1.58 |
R1234yf | 267 | 1.45 | 6.85 | 1.45 | 7.24 | 0.30 | 1.56 |
R1234ze(E) | 494 | 1.31 | 3.83 | 1.63 | 5.94 | 0.34 | 2.04 |
R1234ze(Z) | 61 | 3.89 | 7.05 | 1.77 | 5.08 | 1.78 | 5.70 |
R1336mzz(Z) | 66 | 3.98 | 11.97 | 3.64 | 8.48 | 0.70 | 2.17 |
Overall | 2073 | 1.41 | - | 1.45 | - | 0.54 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierantozzi, M.; Tomassetti, S.; Di Nicola, G. Thermal Conductivity of Low-GWP Refrigerants Modeling with Multi-Object Optimization. Algorithms 2022, 15, 482. https://doi.org/10.3390/a15120482
Pierantozzi M, Tomassetti S, Di Nicola G. Thermal Conductivity of Low-GWP Refrigerants Modeling with Multi-Object Optimization. Algorithms. 2022; 15(12):482. https://doi.org/10.3390/a15120482
Chicago/Turabian StylePierantozzi, Mariano, Sebastiano Tomassetti, and Giovanni Di Nicola. 2022. "Thermal Conductivity of Low-GWP Refrigerants Modeling with Multi-Object Optimization" Algorithms 15, no. 12: 482. https://doi.org/10.3390/a15120482
APA StylePierantozzi, M., Tomassetti, S., & Di Nicola, G. (2022). Thermal Conductivity of Low-GWP Refrigerants Modeling with Multi-Object Optimization. Algorithms, 15(12), 482. https://doi.org/10.3390/a15120482