Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control
Abstract
:1. Introduction
1.1. General Context
1.2. Motivation
1.3. Review of the State of the Art
1.4. Contributions
1.5. Outline of the Article
2. Problem Class, Definitions, and Main Algorithm
Algorithm 1: Decomposition of (MIOCP). |
3. Combinatorial Integral Approximation MILPs
3.1. Combinatorial Integral Approximation and Scaled Variants
3.2. Norm Dependent MILP Formulation
3.3. Chronologically Ordered Constraints
3.4. Combinatorial Constraints
4. A Priori Bounds for CIA Decompositions
4.1. Combinatorial Integral Approximation
4.2. Scaled Combinatorial Integral Approximation
4.3. -Combinatorial Integral Approximation
4.4. Backwards Accumulating Constraints
4.5. Connection to Decomposition Algorithm and Optimization Problem
5. Recombination Heuristics
5.1. GreedyTime
Algorithm 2: GreedyTime heuristic for finding improved variables. |
- 1.
- We can also apply the outer loop in Algorithm 2 backward in time and name the backward version GreedyTimeBackward;
- 2.
- We may consider only singular arcs, instead of looping over all intervals, since the constructed binary controls are likely to be equal on bang–bang arcs. With singular arcs, we mean the intervals where holds for the optimal control solution of (OCP), with a certain threshold ;
- 3.
- Greedy-cost-to-go modification: Assume we have obtained the dual variables of the state equations of (OCP). Then, re-sort the intervals in descending order according to In this way, we construct a new ordered grid to be iterated over in Algorithm 2.
5.2. Singular Arc Recombination
Algorithm 3:Singular arc block heuristic for recombining binary controls , . |
6. Computational Results
6.1. Software Implementation and Instances
6.2. Scaled Combinatorial Integral Approximation
6.3. -Combinatorial Integral Approximation
6.4. Backwards Accumulating Constraints
6.5. Recombination Heuristics
6.6. Runtime Evaluation
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Time horizon | |
t | Time variable |
Differential state vectors | |
Binary control and relaxed binary control | |
Discretized binary control and relaxed binary control variables | |
Objective function for (MIOCP) | |
Model functions of the ODE system | |
Path constraint function for (MIOCP) | |
Number of discretization intervals, differential states, and controls | |
Control discretization grid | |
Discretization grid length | |
Canonical mapping from dicretized controls to control functions | |
Space of binary control functions and discretized binary control variables | |
Evaluated dual variables of the ODE constraints (2b) | |
Set of CIA problems and set of recombination mappings | |
Recombination mapping | |
Optimal MILP objective value, auxiliary MILP objective variable | |
s | Auxiliary MILP constraint variable |
Number of allowed switches | |
L | Lipschitz constant |
Upper bounds on and their derivatives | |
J | Cost-to-go function |
The lth singular arc interval index set |
Appendix A. Detailed Numerical Results
Appendix A.1. Problem Discretization Details
- “Lotka–Volterra (absolute fishing variant)”:, ,
- “Quadrotor (binary variant)”:, ;
- “Lotka–Volterra (terminal constraint violation)”:,;
- “F-8 aircraft (AMPL variant)”:;
- “Egerstedt standard problem”:;
- “Double Tank”:;
- “Double Tank multimode”:; ,
- “Lotka–Volterra fishing problem”:;
- “Lotka–Volterra multi-arcs problem”:;
- “Lotka–Volterra multimode problem”:;
- “Van der Pol Oscillator (binary variant)”:;
- “D’Onofrio chemotherapy model”:Scenario 1,2, and 3 with ;only for scenario 1, for scenario 2, and for scenario 3 resulted in feasible relaxed solutions and were included;
- “Catalyst Mixing problem”:.
Appendix A.2. Average Performance Indicators and Individual Problem Results
Approach | Obj. dev (%) | Switches (#) | Runtime (s) | (Obj. dev) | (Switches) | (Runtime) |
---|---|---|---|---|---|---|
CIAmax | 27.32 | 40.08 | 8.84 | 95.91 | 40.16 | 29.60 |
CIA1 | 27.08 | 39.54 | 106.11 | 93.60 | 38.99 | 385.77 |
SCIAmax | 17.13 | 31.12 | 12.38 | 38.06 | 31.54 | 42.35 |
SCIA1 | 23.71 | 30.94 | 78.17 | 96.18 | 29.91 | 317.55 |
CIA1 | 47.51 | 28.08 | 54.91 | 139.97 | 45.10 | 290.47 |
CIAmaxB | 32.37 | 40.41 | 19.15 | 110.28 | 40.10 | 166.22 |
GreedyTime | 2.06 | 33.36 | 106.26 | 4.27 | 34.47 | 133.61 |
GreedyTimeB | 2.68 | 33.61 | 103.05 | 5.11 | 33.64 | 131.84 |
Greedy-Cost-to-go | 2.01 | 34.05 | 117.24 | 4.24 | 34.09 | 172.88 |
ArcRecombination | 6.53 | 35.34 | 11.26 | 13.55 | 37.01 | 37.12 |
(CIAmax) | (CIA1) | |||||||
---|---|---|---|---|---|---|---|---|
M | Obj. | Diff. to rel. | S (#) | R (s) | Obj. | Diff. to rel. | S (#) | R (s) |
25 | 1.84519 | 0.00920032 | 6 | 0.419997 | 1.84519 | 0.00920032 | 6 | 0.323492 |
50 | 1.83353 | 0.00189968 | 9 | 0.498163 | 1.83353 | 0.00189968 | 9 | 0.526022 |
100 | 1.83458 | 0.00470921 | 15 | 0.564993 | 1.83458 | 0.00470921 | 15 | 0.849123 |
150 | 1.83049 | 0.00129738 | 20 | 0.979946 | 1.83058 | 0.00138375 | 20 | 3.37327 |
200 | 1.8294 | 0.000412465 | 23 | 0.983907 | 1.8294 | 0.000412465 | 23 | 9.61383 |
250 | 1.82887 | 8.52473 | 30 | 2.01582 | 1.82887 | 8.52473 | 30 | 6.84566 |
300 | 1.82884 | 2.1597 | 33 | 1.87382 | 1.82884 | 2.1597 | 33 | 27.4496 |
400 | 1.82879 | 3.40892 | 47 | 3.42292 | 1.82879 | 3.40892 | 47 | 45.0224 |
800 | 1.82875 | 2.58672 | 87 | 66.8739 | 1.82875 | 2.58672 | 87 | 484.285 |
(SCIAmax) | (SCIA1) | |||||||
25 | 1.84519 | 0.00920032 | 6 | 0.313487 | 1.84519 | 0.00920032 | 6 | 0.925208 |
50 | 1.83399 | 0.00235793 | 8 | 0.493533 | 1.83399 | 0.00235793 | 8 | 0.723298 |
100 | 1.91199 | 0.0821278 | 16 | 1.05474 | 1.91199 | 0.0821278 | 16 | 3.62938 |
150 | 1.8834 | 0.0542079 | 20 | 2.84568 | 1.8834 | 0.0542079 | 20 | 9.7413 |
200 | 1.86972 | 0.0407389 | 25 | 7.90383 | 1.86972 | 0.0407389 | 25 | 36.7948 |
250 | 1.82887 | 8.52473 | 30 | 11.6632 | 1.82887 | 8.5189 | 30 | 65.8286 |
300 | 1.82887 | 4.80446 | 32 | 8.75161 | 1.82887 | 4.80449 | 32 | 55.7173 |
400 | 1.82877 | 1.94567 | 47 | 30.4913 | 1.82877 | 1.94577 | 47 | 188.408 |
800 | 1.83859 | 0.00987316 | 88 | 233.701 | 1.8381 | 0.00937638 | 89 | 1479.19 |
(CIA1) | (CIAmaxB) | |||||||
25 | 1.84543 | 0.0094458 | 5 | 0.443169 | 1.87559 | 0.0395975 | 7 | 0.511785 |
50 | 1.84372 | 0.0120927 | 5 | 0.581385 | 1.84076 | 0.00912746 | 9 | 0.574335 |
100 | 1.8533 | 0.0234329 | 16 | 0.839147 | 1.8347 | 0.00483784 | 15 | 0.735999 |
150 | 1.85038 | 0.0211798 | 23 | 2.50497 | 1.83041 | 0.00121583 | 19 | 0.840867 |
200 | 1.83509 | 0.00610253 | 30 | 2.52277 | 1.82932 | 0.000336555 | 25 | 1.53587 |
250 | 1.8289 | 0.000119317 | 25 | 13.3181 | 1.82894 | 0.000159443 | 31 | 2.02886 |
300 | 1.8553 | 0.0264818 | 29 | 6.28425 | 1.82887 | 5.56473 × 10−5 | 35 | 2.94341 |
400 | 2.07161 | 0.242853 | 128 | 12.5695 | 1.82878 | 2.53493 | 47 | 5.77022 |
800 | 3.44174 | 1.61302 | 420 | 18.8157 | 1.82875 | 3.20174 | 89 | 34.2567 |
GreedyTime | GreedyTimeBackward | |||||||
25 | 1.84519 | 0.00920032 | 6 | 3.81442 | 1.84519 | 0.00920032 | 6 | 4.55248 |
50 | 1.83353 | 0.00189968 | 9 | 14.398 | 1.83353 | 0.00189968 | 9 | 14.5728 |
100 | 1.83059 | 0.000723242 | 15 | 16.5069 | 1.83117 | 0.00130419 | 13 | 16.7239 |
150 | 1.82956 | 0.000364781 | 19 | 63.9035 | 1.83 | 0.000802598 | 20 | 60.1375 |
200 | 1.82931 | 0.000326273 | 24 | 52.5325 | 1.82932 | 0.000336555 | 25 | 53.6014 |
250 | 1.82887 | 8.52473 | 30 | 25.9954 | 1.82887 | 8.52473 | 30 | 25.6038 |
300 | 1.82884 | 2.1597 | 33 | 81.1383 | 1.82884 | 2.1597 | 33 | 82.31 |
400 | 1.82877 | 1.94567 | 47 | 217.31 | 1.82877 | 1.94567 | 47 | 179.64 |
800 | 1.82874 | 2.35655 | 87 | 553.42 | 1.82874 | 2.3582 | 87 | 605.012 |
ArcRecombination | Greedy-Cost-to-Go | |||||||
25 | 1.84519 | 0.00920032 | 6 | 0.6978 | 1.84519 | 0.00920032 | 6 | 3.89079 |
50 | 1.83353 | 0.00189968 | 9 | 0.5322 | 1.83353 | 0.00189968 | 9 | 14.4531 |
100 | 1.83458 | 0.00470907 | 15 | 0.3819 | 1.83318 | 0.00331505 | 17 | 27.2192 |
150 | 1.83041 | 0.00121583 | 19 | 0.8785 | 1.82965 | 0.00045483 | 17 | 67.8054 |
200 | 1.82932 | 0.000336555 | 25 | 0.6278 | 1.82931 | 0.000326273 | 24 | 60.569 |
250 | 1.82887 | 8.52473 | 30 | 0.6946 | 1.82887 | 8.52473 | 30 | 25.6708 |
300 | 1.82884 | 2.1597 | 33 | 0.9826 | 1.82884 | 2.1597 | 33 | 103.187 |
400 | 1.82877 | 1.94567 | 47 | 0.5933 | 1.82877 | 1.94567 | 47 | 302.851 |
800 | 1.82874 | 2.3582 | 87 | 0.7660 | 1.82874 | 2.35652 | 87 | 1166.96 |
References
- Egerstedt, M.; Wardi, Y.; Delmotte, F. Optimal Control of Switching Times in Switched Dynamical Systems. In Proceedings of the 42nd IEEE Concference of Decision and Control, Maui, HI, USA, 9–12 December 2003. [Google Scholar]
- Seatzu, C.; Corona, D.; Giua, A.; Bemporad, A. Optimal control of continuous-time switched affine systems. IEEE Trans. Autom. Control. 2006, 51, 726–741. [Google Scholar] [CrossRef]
- Buss, M.; Glocker, M.; Hardt, M.; Stryk, O.V.; Bulirsch, R.; Schmidt, G. Nonlinear Hybrid Dynamical Systems: Modelling, Optimal Control, and Applications; Springer: Berlin/Heidelberg, Germany, 2002; Volume 279, pp. 311–335. [Google Scholar]
- Goebel, R.; Sanfelice, R.G.; Teel, A.R. Hybrid dynamical systems. IEEE Control. Syst. 2009, 29, 28–93. [Google Scholar] [CrossRef]
- Burgschweiger, J.; Gnädig, B.; Steinbach, M. Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks. Open Appl. Math. J. 2009, 3, 1–16. [Google Scholar] [CrossRef]
- Doban, A.I.; Lazar, M. A switched systems approach to cancer therapy. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2718–2724. [Google Scholar]
- Koch, T.; Hiller, B.; Pfetsch, M.E.; Schewe, L. (Eds.) Evaluating Gas Network Capacities; SIAM-MOS Series on Optimization; SIAM: Philadelphia, PA, USA, 2015; Available online: https://archive.siam.org/books/mo21/mo21_toc.pdf (accessed on 15 February 2022).
- Gugat, M.; Herty, M.; Klar, A.; Leugering, G. Optimal Control for Traffic Flow Networks. J. Optim. Theory Appl. 2005, 126, 589–616. [Google Scholar] [CrossRef]
- Fügenschuh, A.; Herty, M.; Klar, A.; Martin, A. Combinatorial and Continuous Models for the Optimization of Traffic Flows on Networks. SIAM J. Optim. 2006, 16, 1155–1176. [Google Scholar] [CrossRef]
- Göttlich, S.; Potschka, A.; Ziegler, U. Partial Outer Convexification for Traffic Light Optimization in Road Networks. SIAM J. Sci. Comput. 2017, 39, B53–B75. [Google Scholar] [CrossRef] [Green Version]
- Göttlich, S.; Herty, M.; Kirchner, C.; Klar, A. Optimal control for continuous supply network models. Netw. Heterog. Media 2007, 1, 675–688. [Google Scholar]
- Abichandani, P.; Benson, H.; Kam, M. Multi-vehicle path coordination under communication constraints. In Proceedings of the American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 650–656. [Google Scholar] [CrossRef] [Green Version]
- Kawajiri, Y.; Biegler, L. A Nonlinear Programming Superstructure for Optimal Dynamic Operations of Simulated Moving Bed Processes. Ind. Eng. Chem. Res. 2006, 45, 8503–8513. [Google Scholar] [CrossRef]
- Sonntag, C.; Stursberg, O.; Engell, S. Dynamic Optimization of an Industrial Evaporator using Graph Search with Embedded Nonlinear Programming. IFAC Proc. Vol. 2006, 39, 211–216. [Google Scholar] [CrossRef]
- Zeile, C.; Rauwolf, T.; Schmeisser, A.; Mizerski, J.K.; Braun-Dullaeus, R.C.; Sager, S. An Intra-Cycle Optimal Control Framework for Ventricular Assist Devices Based on Atrioventricular Plane Displacement Modeling. Ann. Biomed. Eng. 2021, 49, 3508–3523. [Google Scholar] [CrossRef]
- Gerdts, M. A variable time transformation method for mixed-integer optimal control problems. Optim. Control. Appl. Methods 2006, 27, 169–182. [Google Scholar] [CrossRef]
- Robuschi, N.; Zeile, C.; Sager, S.; Braghin, F. Multiphase mixed-integer nonlinear optimal control of hybrid electric vehicles. Automatica 2021, 123, 109325. [Google Scholar] [CrossRef]
- Sager, S. A benchmark library of mixed-integer optimal control problems. In Mixed Integer Nonlinear Programming; Lee, J., Leyffer, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 631–670. [Google Scholar]
- Gerdts, M.; Sager, S. Mixed-Integer DAE Optimal Control Problems: Necessary conditions and bounds. In Control and Optimization with Differential-Algebraic Constraints; Biegler, L., Campbell, S., Mehrmann, V., Eds.; SIAM: Philadelphia, PA, USA, 2012; pp. 189–212. [Google Scholar]
- Hellström, E.; Ivarsson, M.; Aslund, J.; Nielsen, L. Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control. Eng. Pract. 2009, 17, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Teo, K.; Jennings, L.; Rehbock, V. Control Parametrization Enhancing Technique for Optimal Discrete-Valued Control Problems. Automatica 1999, 35, 1401–1407. [Google Scholar] [CrossRef]
- Stellato, B.; Ober-Blöbaum, S.; Goulart, P.J. Second-Order Switching Time Optimization for Switched Dynamical Systems. IEEE Trans. Autom. Control. 2017, 62, 5407–5414. [Google Scholar] [CrossRef] [Green Version]
- Till, J.; Engell, S.; Panek, S.; Stursberg, O. Applied Hybrid System Optimization: An Empirical Investigation of Complexity. Control. Eng. Pract. 2004, 12, 1291–1303. [Google Scholar] [CrossRef]
- Ringkamp, M.; Ober-Blöbaum, S.; Leyendecker, S. On the time transformation of mixed integer optimal control problems using a consistent fixed integer control function. Math. Program. 2017, 161, 551–581. [Google Scholar] [CrossRef]
- Sager, S.; Tetschke, M.; Zeile, C. A Numerical Study of Transformed Mixed-Integer Optimal Control Problems. Technical Report. 2022. Available online: http://www.optimization-online.org/DB_FILE/2020/03/7698.pdf (accessed on 15 February 2022).
- Gerdts, M. Solving mixed-integer optimal control problems by Branch&Bound: A case study from automobile test-driving with gear shift. Optim. Control. Appl. Methods 2005, 26, 1–18. [Google Scholar]
- Sager, S. Numerical Methods for Mixed–Integer Optimal Control Problems; Der Andere Verlag: Marburg, Germany, 2005; ISBN 3-89959-416-9. [Google Scholar]
- Sager, S.; Claeys, M.; Messine, F. Efficient upper and lower bounds for global mixed-integer optimal control. J. Glob. Optim. 2015, 61, 721–743. [Google Scholar] [CrossRef]
- Sager, S.; Reinelt, G.; Bock, H. Direct Methods With Maximal Lower Bound for Mixed-Integer Optimal Control Problems. Math. Program. 2009, 118, 109–149. [Google Scholar] [CrossRef]
- Zhu, F.; Antsaklis, P.J. Optimal control of hybrid switched systems: A brief survey. Discret. Event Dyn. Syst. 2015, 25, 345–364. [Google Scholar] [CrossRef]
- Burgschweiger, J.; Gnädig, B.; Steinbach, M. Optimization Models for Operative Planning in Drinking Water Networks; Technical Report ZR-04-48. ZIB, 2004. Available online: file:///C:/Users/MDPI/Downloads/ZR-04-48.pdf (accessed on 15 February 2022).
- Sager, S.; Jung, M.; Kirches, C. Combinatorial Integral Approximation. Math. Methods Oper. Res. 2011, 73, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Stein, O. Error bounds for mixed integer nonlinear optimization problems. Optim. Lett. 2016, 10, 1153–1168. [Google Scholar] [CrossRef]
- Belotti, P.; Kirches, C.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Mahajan, A. Mixed-Integer Nonlinear Optimization. In Acta Numerica; Iserles, A., Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 22, pp. 1–131. [Google Scholar] [CrossRef] [Green Version]
- Kirches, C.; Lenders, F.; Manns, P. Approximation Properties and Tight Bounds for Constrained Mixed-Integer Optimal Control. SIAM J. Control. Optim. 2016, 58, 1371–1402. [Google Scholar] [CrossRef]
- Hante, F.; Sager, S. Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations. Comput. Optim. Appl. 2013, 55, 197–225. [Google Scholar] [CrossRef] [Green Version]
- Hante, F.M. Relaxation methods for hyperbolic PDE mixed-integer optimal control problems. Optim. Control. Appl. Methods 2017, 38, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Bürger, A.; Zeile, C.; Hahn, M.; Altmann-Dieses, A.; Sager, S.; Diehl, M. pycombina: An open-source tool for solving combinatorial approximation problems arising in mixed-integer optimal control. IFAC-PapersOnLine 2020, 53, 6502–6508. [Google Scholar] [CrossRef]
- Biegler, L. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; Series on Optimization; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Gerdts, M. Optimal Control of ODEs and DAEs; De Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Sager, S.; Bock, H.; Diehl, M. The Integer Approximation Error in Mixed-Integer Optimal Control. Math. Program. A 2012, 133, 1–23. [Google Scholar] [CrossRef]
- Bestehorn, F.; Hansknecht, C.; Kirches, C.; Manns, P. Switching Cost Aware Rounding for Relaxations of Mixed-Integer Optimal Control Problems: The 2-D Case. IEEE Control. Syst. Lett. 2021, 6, 548–553. [Google Scholar] [CrossRef]
- Bestehorn, F.; Hansknecht, C.; Kirches, C.; Manns, P. Mixed-integer optimal control problems with switching costs: A shortest path approach. Math. Program. 2021, 188, 621–652. [Google Scholar] [CrossRef]
- Manns, P. Relaxed multibang regularization for the combinatorial integral approximation. SIAM J. Control. Optim. 2021, 59, 2645–2668. [Google Scholar] [CrossRef]
- Leyffer, S.; Manns, P. Sequential Linear Integer Programming for Integer Optimal Control with Total Variation Regularization. Technical Report. 2021. Available online: https://arxiv.org/pdf/2106.13453.pdf (accessed on 15 February 2022).
- Buchheim, C.; Kuhlmann, R.; Meyer, C. Combinatorial optimal control of semilinear elliptic PDEs. Comput. Optim. Appl. 2018, 70, 641–675. [Google Scholar] [CrossRef]
- Göttlich, S.; Hante, F.M.; Potschka, A.; Schewe, L. Penalty alternating direction methods for mixed-integer optimal control with combinatorial constraints. Math. Program. 2021, 188, 599–619. [Google Scholar] [CrossRef]
- De Marchi, A. On the Mixed-Integer Linear-Quadratic Optimal Control With Switching Cost. IEEE Control. Syst. Lett. 2019, 3, 990–995. [Google Scholar] [CrossRef]
- Sager, S. Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control. J. Process. Control. 2009, 19, 1238–1247. [Google Scholar] [CrossRef] [Green Version]
- Zeile, C. Combinatorial Integral Decompositions for Mixed-Integer Optimal Control. Ph.D. Thesis, Otto–von–Guericke–Universität Magdeburg, Magdeburg, Germany, 2021. [Google Scholar]
- Zeile, C.; Robuschi, N.; Sager, S. Mixed-integer optimal control under minimum dwell time constraints. Math. Program. 2021, 188, 653–694. [Google Scholar] [CrossRef]
- Sager, S.; Zeile, C. On mixed-integer optimal control with constrained total variation of the integer control. Comput. Optim. Appl. 2021, 78, 575–623. [Google Scholar] [CrossRef]
- Manns, P.; Kirches, C. Improved Regularity Assumptions for Partial Outer Convexification of Mixed-Integer PDE-Constrained Optimization Problems. ESAIM Control. Optim. Calc. Var. 2020, 26, 32. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Fourer, R.; Gay, D.; Kernighan, B. AMPL: A Modeling Language for Mathematical Programming; Duxbury Press, 2002. Available online: https://vanderbei.princeton.edu/307/textbook/AMPLbook.pdf (accessed on 15 February 2022).
- Buerger, A.; Zeile, C.; Altmann-Dieses, A.; Sager, S.; Diehl, M. Design, Implementation and Simulation of an MPC algorithm for Switched Nonlinear Systems under Combinatorial Constraints. Process. Control. 2019, 81, 15–30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeile, C.; Weber, T.; Sager, S. Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control. Algorithms 2022, 15, 121. https://doi.org/10.3390/a15040121
Zeile C, Weber T, Sager S. Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control. Algorithms. 2022; 15(4):121. https://doi.org/10.3390/a15040121
Chicago/Turabian StyleZeile, Clemens, Tobias Weber, and Sebastian Sager. 2022. "Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control" Algorithms 15, no. 4: 121. https://doi.org/10.3390/a15040121
APA StyleZeile, C., Weber, T., & Sager, S. (2022). Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control. Algorithms, 15(4), 121. https://doi.org/10.3390/a15040121