Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
- Performing data preprocessing to confirm accuracy through the detection of extreme situations, removing noisy data and missing values.
- Choosing the best classifier, by contrasting regularly used classification methods with CKD studies from the literature review and ablation study.
- An optimized model based on CNN architecture is proposed.
- The precision, recall, specificity, and F1 score are calculated to support the model accuracy. The effectiveness of the models is evaluated using the loss function as well.
- The AUC value is computed in order to assess the proposed model.
3.1. Study Data
3.2. Dataset Preprocessing
3.3. Proposed Methodology
3.4. Optimized Convolutional Neural Network (OCNN)
3.5. Ablation Study of the Proposed Model (OCNN)
3.5.1. Ablation Study 1: Changing Convolution Layer and Dense Layer
3.5.2. Ablation Study 3: Changing the Activation Function
3.5.3. Ablation Study 4: Changing the Dropout Value
3.6. Optimized Artificial Neural Network (OANN)
3.7. Ablation Study of the Proposed Model (Optimized ANN)
3.7.1. Ablation Study 1: Changing Dense Layer
3.7.2. Ablation Study 2: Changing the Activation Function
3.7.3. Ablation Study 3: Changing Kernel Initializer
3.7.4. Ablation Study 4: Changing the Optimizer
3.8. Optimized Long Short-Term Memory (OLSTM)
3.9. Ablation Study of the Proposed Model (OLSTM)
3.9.1. Ablation Study 1: Changing LSTM, Dense, and Dropout Layers
3.9.2. Ablation Study 2: Changing the Activation Function
3.9.3. Ablation Study 3: Changing Kernel Initializer
3.9.4. Ablation Study 4: Changing the Optimizer
3.10. Evaluation Process
4. Experiment and Results
4.1. Training Accuracy of the Models
4.2. Validation Accuracy of the Models
4.3. Training Loss of the Models
4.4. Validation Loss of the Models
4.5. Area under Curve (AUC) Values of the Used Models
4.6. Runtime Analysis
4.7. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khamparia, A.; Saini, G.; Pandey, B.; Tiwari, S.; Gupta, D.; Khanna, A. KDSAE: Chronic kidney disease classification with multimedia data learning using deep stacked autoencoder network. Multimed. Tools Appl. 2020, 79, 35425–35440. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Suresh, C.; Pani, B.C.; Swatisri, C.; Priya, R.; Rohith, R. A Neural Network based Model for Predicting Chronic Kidney Diseases. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp. 157–162. [Google Scholar]
- Zhao, J.; Zhang, Y.; Qiu, J.; Zhang, X.; Wei, F.; Feng, J.; Chen, C.; Zhang, K.; Feng, S.; Wang, Y.; et al. An Early Prediction Model for Chronic Kidney Disease. Sci. Rep. 2022, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Gastel, M.D.; Edwards, M.E.; Torres, V.E.; Erickson, B.J.; Gansevoort, R.T.; Kline, T.L. Automatic measurement of kidney and liver volumes from MR images of patients affected by autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2019, 30, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Chotimah, S.N.; Warsito, B.; Surarso, B. Chronic Kidney Disease Diagnosis System using Sequential Backward Feature Selection and Artificial Neural Network. In Proceedings of the E3S Web of Conferences, Semarang, Indonesia, 4–5 August 2021; EDP Sciences: Les Ulis, France, 2021; Volume 317, p. 05030. [Google Scholar]
- Alsuhibany, S.A.; Abdel-Khalek, S.; Algarni, A.; Fayomi, A.; Gupta, D.; Kumar, V.; Mansour, R.F. Ensemble of Deep Learning Based Clinical Decision Support System for Chronic Kidney Disease Diagnosis in Medical Internet of Things Environment. Comput. Intell. Neurosci. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Habib, A.; Islam, M.A.; Hossen, M.S.; Fahim, W.A.; Sarkar, P.R.; Ahmed, M. Comprehensive Performance Assessment of Deep Learning Models in Early Prediction and Risk Identification of Chronic Kidney Disease. IEEE Access 2021, 9, 165184–165206. [Google Scholar] [CrossRef]
- Iliyas, I.I.; Saidu, I.R.; Dauda, A.B.; Tasiu, S. Prediction of Chronic Kidney Disease Using Deep Neural Network. arXiv 2020, arXiv:2012.12089. [Google Scholar]
- Ma, F.; Sun, T.; Liu, L.; Jing, H. Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network. Future Gener. Comput. Syst. 2020, 111, 17–26. [Google Scholar] [CrossRef]
- Bhaskar, N.; Suchetha, M.; Philip, N.Y. Time Series Classification-Based Correlational Neural Network with Bidirectional LSTM for Automated Detection of Kidney Disease. IEEE Sens. J. 2020, 21, 4811–4818. [Google Scholar] [CrossRef]
- Bhaskar, N.; Suchetha, M. An Approach for Analysis and Prediction of CKD using Deep Learning Architecture. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Cairo, Egypt, 17–19 July 2019; pp. 1660–1664. [Google Scholar] [CrossRef]
- Almansour, N.A.; Syed, H.F.; Khayat, N.R.; Altheeb, R.K.; Juri, R.E.; Alhiyafi, J.; Alrashed, S.; Olatunji, S.O. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Comput. Biol. Med. 2021, 109, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Bandyopadhyay, S.K. Chronic Kidney Disease Prediction Using Neural Approach. medRxiv 2020. [Google Scholar]
- Bhaskar, N.; Suchetha, M. A computationally efficient correlational neural network for automated prediction of chronic kidney disease. IRBM 2021, 42, 268–276. [Google Scholar] [CrossRef]
- Ravindra, B.V.; Sriraam, N.; Geetha, M. Chronic Kidney Disease Detection Using Back Propagation Neural Network Classifier. In Proceedings of the 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 15–18 February 2018; pp. 65–68. [Google Scholar]
- Dubey, G.; Srivastava, Y.; Verma, A.; Rai, S. Chronic Kidney Disease Prediction Using Artificial Neural Network. In Proceedings of the International Conference on Big Data, Machine Learning and their Applications, Osaka, Japan, 17–20 December 2020; Springer: Singapore, 2021; pp. 395–401. [Google Scholar]
- Men, L.; Ilk, N.; Tang, X.; Liu, Y. Multi-disease prediction using LSTM recurrent neural networks. Expert Syst. Appl. 2021, 177, 114905. [Google Scholar] [CrossRef]
- Ghosh, P.; Azam, S.; Hasib, K.M.; Karim, A.; Jonkman, M.; Anwar, A. A Performance based Study on Deep Learning Algorithms in the Effective Prediction of Breast Cancer. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Ghosh, P.; Azam, S.; Quadir, R.; Karim, A.; Shamrat, F.M.; Kumar Bhowmik, S.; Jonkman, M.; Hasib, K.M.; Ahmed, K. SkinNet-16: A Deep Learning Approach to Identify Benign and Malignant Skin Lesions. Front. Oncol. 2022, 3889. [Google Scholar] [CrossRef] [PubMed]
- Chuan, E.; Lin, D. 8 Simple Techniques to Prevent Overfitting. 2020. Available online: https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d (accessed on 5 April 2022).
S. No | Attribute | Datatype | Description | Unit of Measurement |
---|---|---|---|---|
1 | Age | Numerical | Age | Years |
2 | bp | Numerical | Blood Pressure | mm/Hg |
3 | sg | Nominal | Specific Gravity | 1.005, 1.010, 1.015, 1.020, 1.025 |
4 | al | Nominal | Albumin | 0, 1, 2, 3, 4, 5 |
5 | su | Nominal | Sugar | 0, 1, 2, 3, 4, 5 |
6 | rbc | Nominal | Red Blood Cells | Normal, Abnormal |
7 | pc | Nominal | Pus Cell | Normal, Abnormal |
8 | pcc | Nominal | Pus Cell Clumps | Present, Not Present |
9 | ba | Nominal | Bacteria | Present, Not Present |
10 | bgr | Numerical | Blood Glucose Random | mgs/dL |
11 | bu | Numerical | Blood Urea | mgs/dL |
12 | sc | Numerical | Serum Creatinine | mgs/dL |
13 | sod | Numerical | Sodium | mEq/L |
14 | pot | Numerical | Potassium | mEq/L |
15 | hemo | Numerical | Haemoglobin | gms |
16 | pcv | Numerical | Packed Cell Volume | 0, 1, 2, … |
17 | wbcc | Numerical | White Blood Cell Count | cells/cumm |
18 | rbcc | Numerical | Red Blood Cell Count | millions/cumm |
19 | htn | Nominal | Hypertension | Yes, No |
20 | dm | Nominal | Diabetes Mellitus | Yes, No |
21 | cad | Nominal | Coronary Artery Disease | Yes, No |
22 | appet | Nominal | Appetite | Good, Poor |
23 | pe | Nominal | Pedal Edema | Yes, No |
24 | ane | Nominal | Anemia | Yes, No |
25 | Class | Nominal | CKD, Not CKD | CKD, Not CKD |
Model | P | E | AL | OP | LR | CT |
---|---|---|---|---|---|---|
Optimized CNN | 6497 | 8 | ReLu, sigmoid | Adam | 0.1 | 0.00968 |
Optimized ANN | 381 | 8 | ReLu, sigmoid | Adam, Adamax | 0.01 | 0.00447 |
Optimized LSTM | - | 8 | ReLu | Adam | - | 0.00527 |
Performance Measure | ||||
---|---|---|---|---|
Proposed Model | Accuracy | Recall | Precision | F1-Score |
Optimized CNN | 98.75% | 98% | 96.55% | 99% |
Optimized ANN | 96.25% | 94% | 90.32% | 97% |
Optimized LSTM | 97% | 96% | 93.33% | 98% |
Models | ||||||
---|---|---|---|---|---|---|
Performance Measure | OCNN | OANN | OLSTM | CNN | ANN | LSTM |
AUC Score | 0.99 | 0.97 | 0.97 | 0.88 | 0.83 | 0.81 |
Prediction Result | OCNN | OANN | OLSTM |
---|---|---|---|
False positive rate | 0.0 | 0.0 | 0.0 |
False negative rate | 3.448 | 9.677 | 6.666 |
Negative predictive value | 98.07% | 94.23% | 96.16% |
False discovery rate | 0.0 | 0.0 | 0.0 |
Existing work | Author | Model | Accuracy |
Chotimah, et al. [6] | ANN | 88% | |
Alsuhibany, et al. [7] | EDL-CDSS | 96.91% | |
Akter, et al. [8] | Simple RNN | 96% | |
Iliyas, et al. [9] | DNN | 98% | |
Ma, et.al. [10] | ANN-SVM | 92.3% | |
Bhaskar, et al. [11] | 1-D CorrNN-LSTM | 98.08% | |
N. Bhaskar, et al. [12] | CNN-SVM | 96.59% | |
Almansour, et.al. [13] | SVM | 97.76% | |
Our Work | - | Optimized ANN | 96.25% |
- | Optimized LSTM | 97% | |
- | Optimized CNN | 98.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondol, C.; Shamrat, F.M.J.M.; Hasan, M.R.; Alam, S.; Ghosh, P.; Tasnim, Z.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models. Algorithms 2022, 15, 308. https://doi.org/10.3390/a15090308
Mondol C, Shamrat FMJM, Hasan MR, Alam S, Ghosh P, Tasnim Z, Ahmed K, Bui FM, Ibrahim SM. Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models. Algorithms. 2022; 15(9):308. https://doi.org/10.3390/a15090308
Chicago/Turabian StyleMondol, Chaity, F. M. Javed Mehedi Shamrat, Md. Robiul Hasan, Saidul Alam, Pronab Ghosh, Zarrin Tasnim, Kawsar Ahmed, Francis M. Bui, and Sobhy M. Ibrahim. 2022. "Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models" Algorithms 15, no. 9: 308. https://doi.org/10.3390/a15090308
APA StyleMondol, C., Shamrat, F. M. J. M., Hasan, M. R., Alam, S., Ghosh, P., Tasnim, Z., Ahmed, K., Bui, F. M., & Ibrahim, S. M. (2022). Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models. Algorithms, 15(9), 308. https://doi.org/10.3390/a15090308