Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculating Periodicity Intensity Using Time-Lagged Overlapping Windows
Algorithm 1: Compute Periodicity Intensity. | |||
Input | : A time series data Where with N data points. | ||
Optimal window size m and stride length l. {} | |||
Output | : A time series data where . | ||
1 | for | todo | |
2 | |||
3 | = FFT () | ||
4 | = IntensityFunc (, ) where | ||
5 | In this work IntensityFunc where is the close neighbours of | ||
in terms of frequency satisfying . | |||
6 | IntensityFunc can also be the same form as defined in [10] | ||
7 | end for |
2.2. Use Cases for Calculating Periodicity Intensity
2.2.1. Periodicity Intensity in Sensor Data from the Homes of Older Adults
2.2.2. Periodicity Intensity in Student Learning Habits
2.2.3. Periodicity Intensity in Calf Movements
3. Results
3.1. Results of Periodicity Intensity in the Homes of Older Adults
3.2. Results of Periodicity Intensity in Student Learning Habits
3.3. Results of Periodicity Intensity in Calf Movements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADL | Activity of daily living |
ECTS | European credit transfer and accumulation system |
IADL | Instrumental activity of daily living |
RP | Recurrence plots |
SVM | Signal vector magnitude |
VLE | Virtual learning environment |
EMD | Empirical Mode Decomposition |
ZCR | Zero crossing rate |
ZCD | Zerocross Density Decomposition |
References
- Li, J.; Zhang, J.; Bah, M.J.; Wang, J.; Zhu, Y.; Yang, G.; Li, L.; Zhang, K. An Auto-Encoder with Genetic Algorithm for High Dimensional Data: Towards Accurate and Interpretable Outlier Detection. Algorithms 2022, 15, 429. [Google Scholar] [CrossRef]
- Fisher, D.N.; Pruitt, J.N. Insights from the study of complex systems for the ecology and evolution of animal populations. Curr. Zool. 2019, 66, 1–14. [Google Scholar] [CrossRef]
- Kuhlman, S.J.; Craig, L.M.; Duffy, J.F. Introduction to chronobiology. Cold Spring Harb. Perspect. Biol. 2018, 10, a033613. [Google Scholar] [CrossRef]
- Cohen, M. Wellness and the thermodynamics of a healthy lifestyle. Asia-Pac. J. Health Sport Phys. Educ. 2010, 1, 5–12. [Google Scholar] [CrossRef]
- Farhud, D.; Aryan, Z. Circadian rhythm, lifestyle and health: A narrative review. Iran. J. Public Health 2018, 47, 1068. [Google Scholar] [PubMed]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Nath, A.G.; Udmale, S.S.; Raghuwanshi, D.; Singh, S.K. Improved Structural Rotor Fault Diagnosis Using Multi-Sensor Fuzzy Recurrence Plots and Classifier Fusion. IEEE Sens. J. 2021, 21, 21705–21717. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Wang, Y. GW-DC: A Deep Clustering Model Leveraging Two-Dimensional Image Transformation and Enhancement. Algorithms 2021, 14, 349. [Google Scholar] [CrossRef]
- Buman, M.P.; Hu, F.; Newman, E.; Smeaton, A.F.; Epstein, D.R. Behavioral periodicity detection from 24 h wrist accelerometry and associations with cardiometabolic risk and health-related quality of life. Biomed Res. Int. 2016, 2016, 485–506. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Smeaton, A.F. Periodicity intensity for indicating behaviour shifts from lifelog data. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 970–977. [Google Scholar]
- Chegini, S.N.; Manjili, M.J.H.; Bagheri, A. New fault diagnosis approaches for detecting the bearing slight degradation. Meccanica 2020, 55, 261–286. [Google Scholar] [CrossRef]
- Bartlett, M.S. Periodogram analysis and continuous spectra. Biometrika 1950, 37, 1–16. [Google Scholar] [CrossRef] [PubMed]
- VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Azar, Y.; Fiat, A.; Karlin, A.; McSherry, F.; Saia, J. Spectral Analysis of Data. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 6–8 July 2001; Association for Computing Machinery: New York, NY, USA, 2001; pp. 619–626. [Google Scholar] [CrossRef]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological rhythm and chronotype: New perspectives in health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Ho, Q.T.; Phan, D.V.; Ou, Y.Y. Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters. Anal. Biochem. 2019, 577, 73–81. [Google Scholar]
- Rhif, M.; Ben Abbes, A.; Farah, I.R.; Martínez, B.; Sang, Y. Wavelet transform application for/in non-stationary time-series analysis: A review. Appl. Sci. 2019, 9, 1345. [Google Scholar] [CrossRef] [Green Version]
- Chaovalit, P.; Gangopadhyay, A.; Karabatis, G.; Chen, Z. Discrete Wavelet Transform-Based Time Series Analysis and Mining. ACM Comput. Surv. 2011, 43, 1–3. [Google Scholar] [CrossRef]
- Shukla, S.; Mishra, S.; Singh, B. Empirical-mode decomposition with Hilbert transform for power-quality assessment. IEEE Trans. Power Deliv. 2009, 24, 2159–2165. [Google Scholar] [CrossRef]
- Lartillot, O.; Toiviainen, P. A Matlab toolbox for musical feature extraction from audio. In Proceedings of the 8th International Conference on Music Information Retrieval, ISMIR 2007, Vienna, Austria, 23–27 September 2007; Volume 237, p. 244. [Google Scholar]
- Hong, Y.; Lee, Y.J. A general approach to testing volatility models in time series. J. Manag. Sci. Eng. 2017, 2, 1–33. [Google Scholar] [CrossRef]
- Abayomi-Alli, O.O.; Sidekerskienė, T.; Damaševičius, R.; Siłka, J.; Połap, D. Empirical Mode Decomposition Based Data Augmentation for Time Series Prediction Using NARX Network. In Artificial Intelligence and Soft Computing; Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 702–711. [Google Scholar]
- Altaf, M.; Akram, T.; Khan, M.A.; Iqbal, M.; Ch, M.M.I.; Hsu, C.H. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals. Sensors 2022, 22, 2012. [Google Scholar] [CrossRef]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Sidekerskienė, T.; Damaševičius, R.; Woźniak, M. Zerocross Density Decomposition: A Novel Signal Decomposition Method. In Data Science: New Issues, Challenges and Applications; Dzemyda, G., Bernatavičienė, J., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 235–252. [Google Scholar] [CrossRef]
- Uzunoğlu, C.P. A Comparative study of empirical and variational mode decomposition on high voltage discharges. Electrica 2018, 18, 72–77. [Google Scholar] [CrossRef]
- Timon, C.M.; Heffernan, E.; Kilcullen, S.M.; Lee, H.; Hopper, L.; Quinn, J.; McDonald, D.; Gallagher, P.; Smeaton, A.F.; Moran, K.; et al. Development of an Internet of Things Technology Platform (the NEX System) to Support Older Adults to Live Independently: Protocol for a Development and Usability Study. JMIR Res. Protoc. 2022, 11, e35277. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged: The index of ADL: A standardized measure of biological and psychosocial function. J. Am. Med Assoc. 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M. Instrumental Activities of Daily Living (IADL) Scale. Psychopharmacol. Bull. 1988, 24, 785–787. [Google Scholar]
- Baik, C.; Larcombe, W.; Brooker, A. How universities can enhance student mental wellbeing: The student perspective. High. Educ. Res. Dev. 2019, 38, 674–687. [Google Scholar] [CrossRef]
- Rhodes, V.; Maguire, M.; Shetty, M.; McAloon, C.; Smeaton, A.F. Periodicity Intensity of the 24 h Circadian Rhythm in Newborn Calves Show Indicators of Herd Welfare. Sensors 2022, 22, 5843. [Google Scholar] [CrossRef]
- Conradt, L.; Roper, T.J. Group decision-making in animals. Nature 2003, 421, 155–158. [Google Scholar] [CrossRef]
- De Craemer, M.; Verbestel, V. Comparison of Outcomes Derived from the ActiGraph GT3X+ and the Axivity AX3 Accelerometer to Objectively Measure 24-Hour Movement Behaviors in Adults: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 19, 271. [Google Scholar] [CrossRef]
- Riaboff, L.; Aubin, S.; Bedere, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Comput. Electron. Agric. 2019, 165, 104961. [Google Scholar] [CrossRef]
- Fridolfsson, J.; Börjesson, M.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D. Effects of frequency filtering on intensity and noise in accelerometer-based physical activity measurements. Sensors 2019, 19, 2186. [Google Scholar] [CrossRef] [Green Version]
- Byron, L.; Wattenberg, M. Stacked graphs–geometry & aesthetics. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1245–1252. [Google Scholar]
- Espinoza, C.; Lomax, S.; Windsor, P. The effect of topical anaesthesia on the cortisol responses of calves undergoing dehorning. Animals 2020, 10, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeaton, A.F.; Hu, F. Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases. Algorithms 2023, 16, 119. https://doi.org/10.3390/a16020119
Smeaton AF, Hu F. Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases. Algorithms. 2023; 16(2):119. https://doi.org/10.3390/a16020119
Chicago/Turabian StyleSmeaton, Alan F., and Feiyan Hu. 2023. "Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases" Algorithms 16, no. 2: 119. https://doi.org/10.3390/a16020119
APA StyleSmeaton, A. F., & Hu, F. (2023). Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases. Algorithms, 16(2), 119. https://doi.org/10.3390/a16020119