Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application
Abstract
:1. Introduction
2. Approach
2.1. Averaging and Moving Differential
2.2. Dynamic Spectrum Averaging
- A choice of scanning window with the length of w’, which allows fitting the most significant event on an OFDR trace consisting of N samples into it (Figure 4a);
- The process of spatial domain scanning using this window. During the scanning process, for all points from w’/2 to N − w’/2, the standard deviation σ of the signal values P at the points included in this window is calculated;
- Normalization of the obtained σ values to 1 (σ = σnorm);
- A filtered trace (Figure 4b) calculation according to
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Optical fiber acoustic sensor. Appl. Opt. 1977, 16, 1761–1762. [Google Scholar] [CrossRef]
- Maurer, R.D.; Schultz, P.C. Fused Silica Optical Waveguide. U.S. Patent 3659915, 2 May 1972. [Google Scholar]
- Barnoski, M.K.; Jensen, S.M. Fiber waveguides: A novel technique for investigating attenuation characteristics. Appl. Opt. 1976, 15, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Healey, P.; Malyon, D.J. OTDR in single-mode fibre at 1.5 um using heterodyne detection. Electron. Lett. 1982, 20, 862–863. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent progress in distributed fiber acoustic sensing with Φ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef] [PubMed]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, Z.; Lin, S.; Wang, Y.; Jiang, J.; Qiu, Z.; Liu, C.; Rao, Y. Optical-pulse-coding phase-sensitive OTDR with mismatched filtering. Sci. China Inf. Sci. 2022, 65, 192303. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Choban, T.V.; Stepanov, K.V.; Koshelev, K.I.; Chernutsky, A.O.; Pnev, A.B.; Karasik, V.E. Distributed Acoustic Sensor Using a Double Sagnac Interferometer Based on Wavelength Division Multiplexing. Sensors 2022, 22, 2772. [Google Scholar] [CrossRef]
- Escobedo, J.B.; Spirin, V.V.; López-Mercado, C.A.; Lucero, A.M.; Mégret, P.; Zolotovskii, I.O.; Fotiadi, A.A. Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor. Results Phys. 2017, 7, 641–643. [Google Scholar]
- Wegmuller, M.; Von Der Weid, J.P.; Oberson, P.; Gisin, N. High resolution fiber distributed measurements with coherent OFDR. In Proceedings of the ECOC’00, Munich, Germany, 3–7 September 2000; p. 109. [Google Scholar]
- Guo, Z.; Yan, J.; Han, G.; Yu, Y.; Greenwood, D.; Marco, J. High-resolution Φ-OFDR using phase unwrap and nonlinearity suppression. J. Light. Technol. 2023, 1–7. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, D.; Liu, K.; Jiang, J.; Du, Y.; Li, B.; Shang, M.; Liu, T. Long-range OFDR-based distributed vibration optical fiber sensor by multicharacteristics of Rayleigh scattering. IEEE Photonics J. 2017, 9, 6804410. [Google Scholar] [CrossRef]
- Xu, Z.; Kai, C. Research on OFDR Pressure Sensor Based on PDMS. In Proceedings of the International Conference on Precision Instruments and Optical Engineering, Singapore, 21 April 2022; pp. 19–25. [Google Scholar]
- Meng, Y.; Fu, C.; Chen, L.; Du, C.; Zhong, H.; Wang, Y.; He, J.; Bao, W. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters. Opt. Lett. 2022, 47, 6289–6292. [Google Scholar] [CrossRef]
- Ohno, H.; Naruse, H.; Kihara, M.; Shimada, A. Industrial applications of the BOTDR optical fiber strain sensor. Opt. Fiber Technol. 2001, 7, 45–64. [Google Scholar] [CrossRef]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45, W00D23. [Google Scholar] [CrossRef]
- Bogachkov, I.V.; Gorlov, N.I. Research of the Optical Fibers Structure Influence on the Acousto-Optic Interaction Characteristics and the Brillouin Scattering Spectrum Profile. J. Phys. Conf. Ser. 2022, 2182, 012088. [Google Scholar] [CrossRef]
- Krivosheev, A.I.; Barkov, F.L.; Konstantinov, Y.A.; Belokrylov, M.E. State-of-the-Art Methods for Determining the Frequency Shift of Brillouin Scattering in Fiber-Optic Metrology and Sensing (Review). Instrum. Exp. Tech. 2022, 65, 687–710. [Google Scholar] [CrossRef]
- Lopez-Mercado, C.A.; Korobko, D.A.; Zolotovskii, I.O.; Fotiadi, A.A. Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis. Sensors 2021, 21, 6859. [Google Scholar] [CrossRef]
- Fotiadi, A.; Rafailov, E.; Korobko, D.; Mégret, P.; Bykov, A.; Meglinski, I. Brillouin Interaction between Two Optical Modes Selectively Excited in Weakly Guiding Multimode Optical Fibers. Sensors 2023, 23, 1715. [Google Scholar] [CrossRef]
- Krivosheev, A.I.; Konstantinov, Y.A.; Krishtop, V.V.; Turov, A.T.; Barkov, F.L.; Zhirnov, A.A.; Garin, E.O.; Pnev, A.B. A Neural Network Method for the BFS Extraction. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022. [Google Scholar]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.Y.; Ng, T.K.; Ooi, B.S. A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. J. Light Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, T.; He, T.; Li, H.; Yan, Z.; Zhang, L.; Sun, Q. High resolution and large sensing range liquid level measurement using phase-sensitive optic distributed sensor. Opt. Exp. 2021, 29, 11538–11547. [Google Scholar] [CrossRef]
- Ren, L.; Jiang, T.; Jia, Z.-g.; Li, D.-s.; Yuan, C.-l.; Li, H.-n. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement 2018, 122, 57–65. [Google Scholar] [CrossRef]
- Hartog, A.; Frignet, B.; Mackie, D.; Clark, M. Vertical seismic optical profiling on wireline logging cable. Geophys. Prospect. 2014, 62, 693–701. [Google Scholar] [CrossRef]
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. U.S. Patent 5194847A, 16 March 1993. [Google Scholar]
- Chen, M.; Li, B.; Masoudi, A.; Bull, D.; Barton, J.M. Distributed Optical Fibre Sensor for Strain Measurement of Reinforced Concrete Beams. In Proceedings of the 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos, 11–12 January 2020; pp. 102–107. [Google Scholar]
- Matveenko, V.; Kosheleva, N.; Serovaev, G.; Fedorov, A. Measurement of Gradient Strain Fields with Fiber-Optic Sensors. Sensors 2023, 23, 410. [Google Scholar] [CrossRef] [PubMed]
- Matveenko, V.; Kosheleva, N.; Serovaev, G.; Fedorov, A. Analysis of Reliability of Strain Measurements Made with the Fiber Bragg Grating Sensor Rosettes Embedded in a Polymer Composite Material. Sensors 2021, 21, 5050. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wang, X.; Wang, Y.; Zhu, R.; Yuan, Z.; Wang, P.; Jia, Y.; Song, N. An improved device and demodulation method for fiber-optic distributed acoustic sensor based on homodyne detection. Opt. Fiber Technol. 2022, 71, 102925. [Google Scholar] [CrossRef]
- Ashry, I.; Wang, B.; Mao, Y.; Sait, M.; Guo, Y.; Al-Fehaid, Y.; Al-Shawaf, A.; Ng, T.K.; Ooi, B.S. CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment. Sensors 2022, 22, 6491. [Google Scholar] [CrossRef]
- Sandia LabNews. Available online: https://www.sandia.gov/labnews/2021/04/23/a-song-of-ice-and-fiber-2/ (accessed on 20 April 2023).
- Gorshkov, B.G.; Alekseev, A.E.; Simikin, D.E.; Taranov, M.A.; Zhukov, K.M.; Potapov, V.T. A Cost-Effective Distributed Acoustic Sensor for Engineering Geology. Sensors 2022, 22, 9482. [Google Scholar] [CrossRef]
- Ding, Y.; Tian, Y.; Ozharar, S.; Jiang, Z.; Wang, T. Rain Intensity Detection and Classification with Pre-existing Telecom Fiber Cables. In Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES); Optica Publishing Group: Washington, DC, USA, 2022; p. SM2C-7. [Google Scholar]
- Hassanien, R.H.; Hou, T.Z.; Li, Y.F.; Li, B.M. Advances in effects of sound waves on plants. J. Integr. Agric. 2014, 13, 335–348. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, Z.; Li, Y.; Shao, D.; Wu, Y. Ensemble empirical mode decomposition and stacking model for filtering borehole distributed acoustic sensing records. Geophysics 2023, 88, WA319–WA334. [Google Scholar] [CrossRef]
- Abufana, S.A.; Dalveren, Y.; Aghnaiya, A.; Kara, A. Variational mode decomposition-based threat classification for fiber optic distributed acoustic sensing. IEEE Access 2020, 8, 100152–100158. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y. Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10544–10554. [Google Scholar] [CrossRef]
- Yu, Z.; Abma, R.; Etgen, J.; Sullivan, C. Attenuation of noise and simultaneous source interference using wavelet denoising. Geophysics 2017, 82, V179–V190. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, J.; Hu, Z. 3D seismic denoising based on a low-redundancy curvelet transform. J. Geophys. Eng. 2015, 12, 566–576. [Google Scholar] [CrossRef]
- Nordin, N.D.; Abdullah, F.; Zan, M.S.D.; A Bakar, A.A.; Krivosheev, A.I.; Barkov, F.L.; Konstantinov, Y.A. Improving Prediction Accuracy and Extraction Precision of Frequency Shift from Low-SNR Brillouin Gain Spectra in Distributed Structural Health Monitoring. Sensors 2022, 22, 2677. [Google Scholar] [CrossRef]
- Adeel, M.; Shang, C.H.A.O.; Zhu, K.; Lu, C.J.O.E. Nuisance alarm reduction: Using a correlation based algorithm above differential signals in direct detected phase-OTDR systems. Opt. Express 2019, 27, 7685–7698. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, S.; Deng, H.; Gui, D.; Zhang, J.; Ma, M. Nuisance alarm rate reduction using pulse-width multiplexing Φ-OTDR with optimized positioning accuracy. Opt. Commun. 2020, 456, 124571. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, T.; Chen, L.; Bao, X. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Light. Technol. 2010, 28, 3243–3249. [Google Scholar]
- Kowarik, S.; Hussels, M.T.; Chruscicki, S.; Münzenberger, S.; Lämmerhirt, A.; Pohl, P.; Schubert, M. Fiber optic train monitoring with distributed acoustic sensing: Conventional and neural network data analysis. Sensors 2020, 20, 450. [Google Scholar] [CrossRef]
- Escobedo, J.B.; Jason, J.; López-Mercado, C.A.; Spirin, V.V.; Wuilpart, M.; Mégret, P.; Korobko, D.A.; Zolotovskiy, I.O.; Fotiadi, A.A. Distributed measurements of vibration frequency using phase-OTDR with a DFB laser self-stabilized through PM fiber ring cavity. Results Phys. 2019, 12, 1840–1842. [Google Scholar] [CrossRef]
- López-Mercado, C.A.; Jason, J.; Spirin, V.V.; Escobedo, J.L.B.; Wuilpart, M.; Mégret, P.; Korobko, D.A.; Zolotovskiy, I.O.; Fotiadi, A.A. Cost-effective laser source for phase-otdr vibration sensing. Opt. Sens. Detect. V 2018, 10680, 590–597. [Google Scholar]
- Masoudi, A.; Snook, J.H.; Lee, T.; Beresna, M.; Brambilla, G. Application of Ultra Low-loss Enhanced Backscattering Fiber in High Spatial Resolution Distributed Acoustic Sensors. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Technical Digest Series, 29 August–2 September 2022; p. Th4–9. [Google Scholar]
- Chen, D.; Liu, Q.; He, Z. Fading-suppressed distributed fiber-optic acoustic sensor with 0.8-m spatial resolution and 246-pε/√ Hz strain resolution. In Proceedings of the 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, Lausanne Switzerland, 24–28 September 2018; p. TuE93. [Google Scholar]
- Qian, Z.; Ya-Hui, W.; Ming-Jiang, Z.; Jian-Zhong, Z.; Li-Jun, Q.; Tao, W.; Le, Z. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser. Acta Phys. Sin. 2019, 68, 104208. [Google Scholar]
- Thevenaz, L.; Beugnot, J.-C. General analytical model for distributed Brillouin sensors with sub-meter spatial resolution. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 5 October 2009; p. 75036A. [Google Scholar]
- Masoudi, A.; Snook, J.H.; Lee, T.; Beresna, M.; Brambilla, G. A High Spatial Resolution Distributed Acoustic Sensor based on Ultra Low-loss Enhanced Backscattering Fiber. In Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES); Technical Digest Series; Optica Publishing Group: Washington, DC, USA, 2022; p. SM2C.5A. [Google Scholar]
- Ponomarev, R.S.; Konstantinov, Y.A.; Belokrylov, M.E.; Shevtsov, D.I.; Karnaushkin, P.V. An Automated Instrument for Reflectometry Study of the Pyroelectric Effect in Proton-Exchange Channel Waveguides Based on Lithium Niobate. Instrum. Exp. Tech. 2022, 65, 787–796. [Google Scholar] [CrossRef]
- Bencharif, B.A.E.; Ölçer, I.; Özkan, E.; Cesur, B. Detection of acoustic signals from Distributed Acoustic Sensor data with Random Matrix Theory and their classification using Machine Learning. SPIE Future Sens. Technol. 2022, 11525, 389–395. [Google Scholar]
- Peng, Z.; Wen, H.; Jian, J.; Gribok, A.; Wang, M.; Huang, S.; Liu, H.; Mao, Z.-H.; Chen, K.P. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks. Sci. Rep. 2020, 10, 21014. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Ashry, I.; Alias, M.S.; Ng, T.K.; Hveding, F.; Arsalan, M.; Ooi, B.S. Investigating the performance of a few-mode fiber for distributed acoustic sensing. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Deng, Z.; Liang, Y.; Jiang, J.; Wang, Z. High-Performance Distributed Acoustic Sensing with Coherent Detection. In Proceedings of the 10th International Conference on Information, Communication and Networks (ICICN), Zhangye, China, 23–24 August 2022; pp. 485–488. [Google Scholar]
- Kocal, E.B.; Yüksel, K.; Wuilpart, M. Combined Effect of Multi-Reflection and Spectral Shadowing Crosstalk in Phase-OTDR System Using Fiber Bragg Grating Array. In Proceedings of the Optical Fiber Sensors Conference 2020, Special Edition, Washington, DC, USA, 8–12 June 2020; p. T3–40. [Google Scholar]
- Jiang, J.; Wang, Y.; Zhang, J.; Wang, Z. Cramér-Rao Lower Bound of Rayleigh-Scattering-Pattern-Based Distributed Acoustic Sensing with Coherent Detection. In Proceedings of the 14th International Conference on Advanced Infocomm Technology (ICAIT), Chongqing, China, 8–11 July 2022; pp. 193–196. [Google Scholar]
- Choban, T.V.; Zhirnov, A.A.; Chernutsky, A.O.; Stepanov, K.V.; Pniov, A.B.; Galzerano, G.; Karasik, V.E.; Svelto, C. Φ-OTDR based on tunable Yb-Er: Phosphate-glass laser. J. Phys. Conf. Ser. 2019, 1410, 012108. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, J.; Wang, Z.; Wang, Z.; Qiu, Z.; Liu, C.; Deng, Z.; Rao, Y.J. Quasi-distributed fiber-optic acoustic sensing with MIMO technology. IEEE Internet Things J. 2021, 8, 15284–15291. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Gorshkov, B.G.; Potapov, V.T. Fidelity of the dual-pulse phase-OTDR response to spatially distributed external perturbation. Laser Phys. 2019, 29, 055106. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.; Hu, J.; Zhu, K.; Dang, Y.; Yan, Y.; Tang, M.; Lu, C. Interference fading suppression in φ-OTDR using space-division multiplexed probes. Opt. Express 2021, 29, 15452–15462. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, Z.; Wang, X.; Liao, R.; Lu, C. Simultaneous distributed vibration and temperature sensing using multicore fiber. IEEE Access 2019, 7, 151818–151826. [Google Scholar] [CrossRef]
- Marin, J.M.; Ashry, I.; Alkhazragi, O.; Trichili, A.; Ng, T.K.; Ooi, B.S. Simultaneous distributed acoustic sensing and communication over a two-mode fiber. Opt. Lett. 2022, 47, 6321–6324. [Google Scholar] [CrossRef]
- Ellmauthaler, A.; LeBlanc, M.; Bush, J.; Willis, M.E.; Maida, J.L.; Wilson, G.A. Real-time DAS VSP acquisition and processing on single-and multi-mode fibers. IEEE Sens. J. 2020, 21, 14847–14852. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Jiang, J.; Han, B.; Rao, Y. High sensitivity and large measurable range distributed acoustic sensing with Rayleigh-enhanced fiber. Opt. Lett. 2021, 46, 2569–2572. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Liu, Q.; He, Z. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array. Opt. Lett. 2018, 43, 3594–3597. [Google Scholar] [CrossRef]
- Zhang, S.; He, T.; Fan, C.; Li, H.; Yan, Z.; Liu, D.; Sun, Q. An intrusion events recognition method by incremental learning assisted with fiber optic DAS system. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 15–20 May 2022; p. JW3A–22. [Google Scholar]
- Yan, S.; Shang, Y.; Wang, C.; Zhao, W.; Ni, J. Mixed intrusion events recognition based on group convolutional neural networks in DAS system. IEEE Sens. J. 2021, 22, 678–684. [Google Scholar] [CrossRef]
- ElKashlan, M.; Aslan, H.; Said Elsayed, M.; Jurcut, A.D.; Azer, M.A. Intrusion Detection for Electric Vehicle Charging Systems (EVCS). Algorithms 2023, 16, 75. [Google Scholar] [CrossRef]
- Fedorchenko, E.; Novikova, E.; Shulepov, A. Comparative review of the intrusion detection systems based on federated learning: Advantages and open challenges. Algorithms 2022, 15, 247. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Al-Fehaid, Y.; Al-Shawaf, A.; Al-Bagshi, M.; Al-Brahim, S.; Ng, T.K.; Ooi, B.S. Early detection of red palm weevil using distributed optical sensor. Sci. Rep. 2020, 10, 3155. [Google Scholar] [CrossRef]
- Tey, W.T.; Connie, T.; Choo, K.Y.; Goh, M.K.O. Cicada Species Recognition Based on Acoustic Signals. Algorithms 2022, 15, 358. [Google Scholar] [CrossRef]
- Abdollahi, M.; Giovenazzo, P.; Falk, T.H. Automated beehive acoustics monitoring: A comprehensive review of the literature and recommendations for future work. Appl. Sci. 2022, 12, 3920. [Google Scholar] [CrossRef]
- Zheng, Y.; Maev, R.G.; Solodov, I.Y. Review/Sythèse Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 2000, 77, 927–967. [Google Scholar] [CrossRef]
- Buck, O. Nonlinear Acoustic Properties of Structural Materials—A Review. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 1677–1684. [Google Scholar]
- Krohn, N.; Pfleiderer, K.; Stoessel, R.; Solodov, I.; Busse, G. Nonlinear acoustic imaging: Fundamentals, methodology, and NDE-applications. In Acoustical Imaging; Springer: Dordrecht, The Netherlands, 2004; pp. 91–98. [Google Scholar]
- Broda, D.; Staszewski, W.J.; Martowicz, A.; Uhl, T.; Silberschmidt, V.V. Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—A review. J. Sound Vib. 2014, 333, 1097–1118. [Google Scholar] [CrossRef]
- Sutin, A.M.; Salloum, H. Interaction of Acoustic and Electromagnetic Waves in Nondestructive Evaluation and Medical Applications. Radiophys. Quantum Electron. 2020, 63, 40–54. [Google Scholar] [CrossRef]
- Alnutayfat, A.; Hassiotis, S.; Liu, D.; Sutin, A. Sideband Peak Count in a Vibro-Acoustic Modulation Method for Crack Detection. Acoustics 2022, 4, 74–86. [Google Scholar] [CrossRef]
- Zhou, H.; Ji, T.; Wang, R.; Ge, X.; Tang, X.; Tang, S. Multipath ultrasonic gas flow-meter based on multiple reference waves. Ultrasonics 2018, 82, 145–152. [Google Scholar] [CrossRef]
- Berrebi, J.; van Deventer, J.; Delsing, J. Detection of pulsating flows in an ultrasonic flow meter. In Proceedings of the International Symposium on District Heating and Cooling, Trondheim, Norway, 14–16 August 2002. [Google Scholar]
- Shardakov, I.; Glot, I.; Shestakov, A.; Tsvetkov, R.; Yepin, V.; Gusev, G. Analysis of quasistatic deformation of reinforced concrete structure on the basis of acoustic emission on the results of vibration diagnostics and acoustic emission. Procedia Struct. Integr. 2020, 28, 1407–1415. [Google Scholar] [CrossRef]
- Lysenko, S.; Bobrovnikova, K.; Kharchenko, V.; Savenko, O. IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms: Traffic Features Analysis, Experiments, and Efficiency. Algorithms 2022, 15, 239. [Google Scholar] [CrossRef]
- Juma, M.; Alattar, F.; Touqan, B. Securing Big Data Integrity for Industrial IoT in Smart Manufacturing Based on the Trusted Consortium Blockchain (TCB). IoT 2023, 4, 27–55. [Google Scholar] [CrossRef]
- Khan, T. Ultra-Low-Power Architecture for the Detection and Notification of Wildfires Using the Internet of Things. IoT 2023, 4, 1–26. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Zavieh, H.; Khaniabadi, S.M. SALA-IoT: Self-reduced internet of things with learning automaton sleep scheduling algorithm. IEEE Sens. J. 2023, 1. [Google Scholar] [CrossRef]
Event Frequency, kHz | Event Type | Most Efficient Technique | SNR Increase, dB |
---|---|---|---|
10 | Pointwise | MD+FDDA | 5.2 |
3 | Pointwise with harmonics | FDDA | 6.6 |
2 | Distributed | SA+FDDA | 9.7 |
6.5 | Distributed | SA+FDDA | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turov, A.T.; Konstantinov, Y.A.; Barkov, F.L.; Korobko, D.A.; Zolotovskii, I.O.; Lopez-Mercado, C.A.; Fotiadi, A.A. Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application. Algorithms 2023, 16, 217. https://doi.org/10.3390/a16050217
Turov AT, Konstantinov YA, Barkov FL, Korobko DA, Zolotovskii IO, Lopez-Mercado CA, Fotiadi AA. Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application. Algorithms. 2023; 16(5):217. https://doi.org/10.3390/a16050217
Chicago/Turabian StyleTurov, Artem T., Yuri A. Konstantinov, Fedor L. Barkov, Dmitry A. Korobko, Igor O. Zolotovskii, Cesar A. Lopez-Mercado, and Andrei A. Fotiadi. 2023. "Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application" Algorithms 16, no. 5: 217. https://doi.org/10.3390/a16050217
APA StyleTurov, A. T., Konstantinov, Y. A., Barkov, F. L., Korobko, D. A., Zolotovskii, I. O., Lopez-Mercado, C. A., & Fotiadi, A. A. (2023). Enhancing the Distributed Acoustic Sensors’ (DAS) Performance by the Simple Noise Reduction Algorithms Sequential Application. Algorithms, 16(5), 217. https://doi.org/10.3390/a16050217