Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects
Abstract
1. Introduction
2. Framework of an Integrated Decision Support System for Scaffolding in Construction Projects
2.1. Data Processing
2.2. Simulation Modules
2.2.1. Technical Evaluation Module
2.2.2. Phase 2: Alternative Ranking Module
The Influential Factors for Scaffolding Decision Making in Phase 2
Analysis Method of Fuzzy Analytical Hierarchy Processing
Steps to Proceed for FAHP-Based Module
Alternative Ranking
3. Implementation of the Proposed Framework
3.1. Step 1: Data Processing
3.2. Step 2: Implementation of Phase 1
3.3. Step 3: Implementation of Phase 2
4. Discussion
4.1. Sensitivity Analysis of Weight Changes
4.2. Comparisons of Different MCDM Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurmu, A.T. Preconstruction Phase Management Practices Enhancing Labor Productivity in Multistory Building Projects. J. Constr. Eng. Manag. 2023, 149, 04023032. [Google Scholar] [CrossRef]
- Raoufi, M.; Fayek, A.R. Key Moderators of the Relationship between Construction Crew Motivation and Performance. J. Constr. Eng. Manag. 2018, 144, 04018047. [Google Scholar] [CrossRef]
- Yin, Z.; Caldas, C. Scaffolding in industrial construction projects: Current practices, issues, and potential solutions. Int. J. Constr. Manag. 2022, 22, 2554–2563. [Google Scholar] [CrossRef]
- Cho, C.; Kim, K.; Park, J.; Cho, Y.K. Data-driven monitoring system for preventing the collapse of scaffolding structures. J. Constr. Eng. Manag. 2018, 144, 04018077. [Google Scholar] [CrossRef]
- Jin, H.; Nahangi, M.; Goodrum, P.M.; Yuan, Y. Multiobjective Optimization for Scaffolding Space Planning in Industrial Piping Construction Using Model-Based Simulation Programming. J. Comput. Civil. Eng. 2020, 34, 06019001. [Google Scholar] [CrossRef]
- Dogan, E.; Yurdusev, M.A.; Yildizel, S.A.; Calis, G. Investigation of scaffolding accident in a construction site: A case study analysis. Eng. Fail. Anal. 2021, 120, 105108. [Google Scholar] [CrossRef]
- Zeitzmann, J. Internal Analysis on Scaffolding; Kaefer Isoliertechnik: Bremen, Germany, 2006. [Google Scholar]
- Szóstak, M.; Hoła, B.; Bogusławski, P. Identification of accident scenarios involving scaffolding. Autom. Constr. 2021, 126, 103690. [Google Scholar] [CrossRef]
- Akinci, B.; Fischer, M.; Kunz, J.; Levitt, R. Representing work spaces generically in construction method models. J. Constr. Eng. Manag. 2002, 128, 296–305. [Google Scholar] [CrossRef]
- Fang, D.; Shen, Q.; Wu, S.; Liu, G. A comprehensive framework for assessing and selecting appropriate scaffolding based on analytic hierarchy process. J. Saf. Res. 2003, 34, 589–596. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, H. Temporary facility planning of a construction project using BIM (Building Information Modeling). Comput. Civ. Eng. 2011, 627–634. [Google Scholar]
- Kim, J.; Fischer, M. Formalization of the features of activities and classification of temporary structures to support an automated temporary structure planning. Comput. Civ. Eng. 2007, 338–346. [Google Scholar]
- Kim, J.; Fischer, M.; Kunz, J.; Levitt, R. Semiautomated scaffolding planning: Development of the feature lexicon for computer application. J. Comput. Civil. Eng. 2015, 29, 04014079. [Google Scholar]
- Jackman, J.; Ogilvie, C.; Ryan, S.; Niederhauser, D. Scaffolding to Improve Reasoning Skills in Problem Formulation. In Proceedings of the 2008 Annual Conference & Exposition, Pittsburgh, PA, USA, 22–25 June 2008. [Google Scholar]
- Bannier, P.; Jin, H.; Goodrum, P.M. Modeling of work envelope requirements in the piping and steel trades and the influence of global anthropomorphic characteristics. J. Inf. Technol. Constr. 2016, 21, 292–314. [Google Scholar]
- Kim, K.; Cho, Y.K.; Kim, K. BIM-based decision-making framework for scaffolding planning. J. Manag. Eng. 2018, 34, 04018046. [Google Scholar] [CrossRef]
- Hosseini, S.A.; de la Fuente, A.; Pons, O. Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. J. Constr. Eng. Manag. 2016, 142, 04016036. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Karakhan, A.A.; Rajendran, S.; Gambatese, J.; Nnaji, C. Measuring and evaluating safety maturity of construction contractors: Multicriteria decision-making approach. J. Constr. Eng. Manag. 2018, 144, 04018054. [Google Scholar] [CrossRef]
- Medineckiene, M.; Zavadskas, E.; Björk, F.; Turskis, Z. Multi-criteria decision-making system for sustainable building assessment/certification. Arch. Civ. Mech. Eng. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Tan, T.; Mills, G.; Papadonikolaki, E.; Liu, Z. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Autom. Constr. 2021, 121, 103451. [Google Scholar]
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-criteria decision making in civil engineering: Part I–a state-of-the-art survey. Eng. Struct. Technol. 2015, 7, 103–113. [Google Scholar] [CrossRef]
- Fayek, A.R. Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. J. Constr. Eng. Manag. 2020, 146, 04020064. [Google Scholar] [CrossRef]
- Alshibani, A.; Elassir, H.; Al-Najjar, M.; Hamida, H. AHP Based Approach for Crane Selection of Building Construction in Saudi Arabia: A Case Study. In Proceedings of the Annual Conference-Canadian Society for Civil Engineering, Montreal, QC, Canada, 12–15 June 2019. [Google Scholar]
- Mahamadu, A.-M.; Mahdjoubi, L.; Booth, C. Supplier BIM competence assessments within the cloud: A proposed Fuzzy-TOPSIS approach. BIM 2015, 149, 71–82. [Google Scholar]
- Alireza, A.F.F.; Rashidi, T.H.; Akbarnezhad, A.; Waller, S.T. BIM-enabled sustainability assessment of material supply decisions. Eng. Constr. Archit. Manag. 2017, 24, 668–695. [Google Scholar]
- Wang, T.-K.; Zhang, Q.; Chong, H.-Y.; Wang, X. Integrated supplier selection framework in a resilient construction supply chain: An approach via analytic hierarchy process (AHP) and grey relational analysis (GRA). Sustainability 2017, 9, 289. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Mbachu, J. Optimization of the supplier selection process in prefabrication using BIM. Buildings 2019, 9, 222. [Google Scholar] [CrossRef]
- Ahmad, T.; Thaheem, M.J. Economic sustainability assessment of residential buildings: A dedicated assessment framework and implications for BIM. Sustain. Cities Soc. 2018, 38, 476–491. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Gnanavelbabu, A.; Prabhuraj, B.L. A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches. J. Adv. Manag. Res. 2018, 16, 234–259. [Google Scholar] [CrossRef]
- Ahmed, M.; Mallick, J.; AlQadhi, S.; Ben Kahla, N. Development of concrete mixture design process using MCDM approach for sustainable concrete quality management. Sustainability 2020, 12, 8110. [Google Scholar] [CrossRef]
- Amorocho, J.A.P.; Hartmann, T. A multi-criteria decision-making framework for residential building renovation using pairwise comparison and TOPSIS methods. J. Build. Eng. 2022, 53, 104596. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Houssain, S.; Guarascio-Howard, L. Improving Productivity and Ergonomics in HVAC Installation. In Proceedings of the 49th ASC Annual International Conference Proceedings, San Luis Obispo, CA, USA, 10–13 April 2013. [Google Scholar]
- Kumar, C. Estimation and Planning Methodology for Industrial Construction Scaffolding. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2013. [Google Scholar]
- Guo, S.J. Identification and resolution of work space conflicts in building construction. J. Constr. Eng. Manage. 2002, 128, 287–295. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Karayalcin, I.I. The analytic hierarchy process: Planning, priority setting, resource allocation. Eur. J. Oper. Res. 1982, 97–98. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Rao, R.V.; Davim, J.P. A decision-making framework model for material selection using a combined multiple attribute decision-making method. Int. J. Adv. Manuf. Technol. 2008, 35, 751–760. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Sen, C.G.; Çınar, G. Evaluation and pre-allocation of operators with multiple skills: A combined fuzzy AHP and max–min approach. Expert Syst. Appl. 2010, 37, 2043–2053. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Yoon, K. System Selection by Multiple Attribute Decision Making. Ph.D. Thesis, Kansas State University, Manhatan, KS, USA, 1980. [Google Scholar]
Linguistic Description | Fuzzy Number | |
---|---|---|
Equally important | (1, 1, 1) | |
Intermediate values between and | (1, 2, 3) | |
Moderate important | (2, 3, 4) | |
Intermediate values between and | (3, 4, 5) | |
Essential important | (4, 5, 6) | |
Intermediate values between and | (5, 6, 7) | |
Very vital important | (6, 7, 8) | |
Intermediate values between and | (7, 8, 9) | |
Extreme vital important | (8, 9, 10) |
Workface ID | x | y | z | Workface Orientation |
---|---|---|---|---|
001 | 200.3 | 10000.0 | 5959.7 | upward |
002 | 200.3 | 10069.9 | 6362.6 | upward |
003 | 200.3 | 10059.5 | 6902.6 | upward |
004 | 715.6 | 5105.0 | 6622.0 | upward |
⁝ | ⁝ | ⁝ | ||
039 | 11917.6 | 4981.6 | 7127.6 | upward |
040 | 11923.8 | 5005.7 | 7019.6 | upward |
041 | 1197.6 | 5018.4 | 6817.7 | upward |
042 | 11799.7 | 5105.0 | 5979.2 | upward |
ID | Manufacturer | Manufacturer Country | Model | Type | MWH (m) | Platform Length (m) | Platform Width (m) | Raise/Lower Speed (s) | Drive Speed-Stowed (km/h) | Lift Capacity (kg) | Horizontal Reach (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Genie | USA | GSTM-1930 | Scissor lift | 7.79 | 1.63 | 0.74 | 16/25 | 4.0 | 227 | - |
2 | Genie | USA | GSTM-2032 | Scissor lift | 8.10 | 2.26 | 0.81 | 30/34 | 3.5 | 363 | - |
3 | Mantall | China | XE65N | Scissor lift | 6.50 | 1.64 | 0.75 | 16/22 | 3.8 | 270 | - |
⁝ | ⁝ | ⁝ | |||||||||
10 | Haulotte | France | Quick-up 7 | Vertical lift | 6.70 | 0.68 | 0.66 | - | - | 200 | - |
11 | Haulotte | France | Quick-up 8 | Vertical lift | 8.10 | 0.68 | 0.66 | - | - | 159 | - |
12 | Haulotte | France | Quick-up 8 | Vertical lift | 9.50 | 0.68 | 0.66 | - | - | 159 | - |
⁝ | ⁝ | ⁝ | |||||||||
22 | JLG | USA | 600S | Telescopic lift | 18.36 | 2.44 | 0.91 | - | 6.8 | 227 | 15.09 |
23 | JLG | USA | 600J | Telescopic lift | 20.36 | 2.44 | 0.91 | - | 6.8 | 227 | 17.30 |
24 | SINOBOOM | China | GTZZ15J | Telescopic lift | 14.80 | 1.83 | 0.76 | - | 7.0 | 250 | 7.62 |
Criteria | C1 | C2 | C3 | C4 |
---|---|---|---|---|
C1 | (1, 1, 1) | (1, 2, 3) | (1/3, 1/2, 1) | (2, 3, 4) |
C2 | (1/3, 1/2, 1) | (1, 1, 1) | (1/3, 1/2, 1) | (1, 2, 3) |
C3 | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (3, 4, 5) |
C4 | (1/4, 1/3, 1/2) | (1/3, 1/2, 1) | (1/5, 1/4, 1/3) | (1, 1, 1) |
Main Criteria | Local Weight | Sub-Criteria | Local Weight | Global Weight | Ranking |
---|---|---|---|---|---|
C1 | 0.2885 | C11 | 0.2415 | 0.070 | 5 |
C12 | 0.6131 | 0.177 | 1 | ||
C13 | 0.1454 | 0.022 | 9 | ||
C2 | 0.1958 | C21 | 0.2140 | 0.042 | 10 |
C22 | 0.1870 | 0.037 | 11 | ||
C23 | 0.1143 | 0.022 | 12 | ||
C24 | 0.2367 | 0.046 | 8 | ||
C25 | 0.2480 | 0.049 | 6 | ||
C3 | 0.4145 | C31 | 0.4211 | 0.175 | 2 |
C32 | 0.3707 | 0.154 | 3 | ||
C33 | 0.2082 | 0.086 | 4 | ||
C4 | 0.1012 | C41 | 0.4618 | 0.047 | 7 |
C42 | 0.2121 | 0.021 | 13 | ||
C43 | 0.1282 | 0.013 | 15 | ||
C44 | 0.1979 | 0.020 | 14 |
Alternatives | Selection Criteria | Separation Distances | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11 | C12 | C13 | C21 | C22 | C23 | C24 | C25 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | di+ | di− | |
A1 | 0.483 | 0.523 | 0.480 | 0.402 | 0.410 | 0.580 | 0.535 | 0.549 | 0.496 | 0.518 | 0.478 | 0.499 | 0.468 | 0.461 | 0.540 | 0.017 | 0.026 |
A2 | 0.515 | 0.567 | 0.398 | 0.570 | 0.526 | 0.410 | 0.484 | 0.492 | 0.502 | 0.489 | 0.527 | 0.544 | 0.493 | 0.502 | 0.501 | 0.014 | 0.033 |
A3 | 0.547 | 0.492 | 0.590 | 0.494 | 0.582 | 0.479 | 0.440 | 0.481 | 0.461 | 0.535 | 0.478 | 0.537 | 0.525 | 0.496 | 0.475 | 0.021 | 0.025 |
A4 | 0.450 | 0.403 | 0.514 | 0.519 | 0.465 | 0.517 | 0.535 | 0.475 | 0.537 | 0.454 | 0.515 | 0.409 | 0.512 | 0.538 | 0.482 | 0.034 | 0.016 |
Alternatives | CCi | Ranking |
---|---|---|
A1 | 0.609418 | 2 |
A2 | 0.702759 | 1 |
A3 | 0.545311 | 3 |
A4 | 0.326086 | 4 |
FAHP-TOPSIS | FAHP-MAVT | FAHP-VIKOR | |
---|---|---|---|
FAHP-TOPSIS | 1.0 | 0.900 | 1.0 |
FAHP-MAVT | 0.900 | 1.0 | 0.900 |
FAHP-VIKOR | 1.0 | 0.900 | 1.0 |
MCDM method | Change criterion weight | |||||||||||
−5% | +5% | −50% | +50% | |||||||||
Sensitivity coefficient SC* | ||||||||||||
0 | 2 | >2 | 0 | 2 | >2 | 0 | 2 | >2 | 0 | 2 | >2 | |
Occurrence of sensitivity coefficient among 15 sub-criteria | ||||||||||||
FAHP-TOPSIS | 15 | 0 | 0 | 15 | 0 | 0 | 13 | 0 | 2 | 10 | 3 | 2 |
FAHP-MAVT | 15 | 0 | 0 | 15 | 0 | 0 | 13 | 2 | 0 | 15 | 0 | 0 |
FAHP-VIKOR | 15 | 0 | 0 | 15 | 0 | 0 | 14 | 1 | 0 | 13 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Goodrum, P.M. Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms 2023, 16, 348. https://doi.org/10.3390/a16070348
Jin H, Goodrum PM. Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms. 2023; 16(7):348. https://doi.org/10.3390/a16070348
Chicago/Turabian StyleJin, Haifeng, and Paul M. Goodrum. 2023. "Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects" Algorithms 16, no. 7: 348. https://doi.org/10.3390/a16070348
APA StyleJin, H., & Goodrum, P. M. (2023). Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms, 16(7), 348. https://doi.org/10.3390/a16070348