Quantum-Inspired Neural Network Model of Optical Illusions
Abstract
:1. Introduction
2. Deep Neural Network Algorithm
- Construct two output nodes that correspond to and perceptual states of the Necker cube;
- Initialise the weights of the neural network in the range from −1 to 1 using a random number generator;
- Enter input data and corresponding training data that encode the perceptual states of the Necker cube (the top and the middle illustrations on the left of Figure 3);
- Calculate error between output and target as ;
- Propagate output in the backward direction of the network and compute respective parameters of the hidden nodes using equations and , where index n denotes the sequential number of the hidden layer, prime denotes the derivative of the activation function and is the transpose of the matrix of weights corresponding to each relevant layer of the network.
- Repeat Step 5 until the back-propagation algorithm reaches the first hidden layer;
- Update the weights using learning rule , where are the weights between output node i and input node j of the nth layer and ;
- Repeat Steps 4–7 for all values of the training data set;
- Repeat Steps 4–8 until the neural network is trained with desired accuracy.
Results: Predictions of the Neural Network Model
3. Quantum Oscillator Model of Perception of Ambiguous Figures
Results: Predictions of the Quantum Oscillator Model
4. Discussion
4.1. Neural Network Model versus Quantum Oscillator Model
4.2. Potential Applications in Artificial Intelligence and Virtual Reality Systems
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
artificial Intelligence | AI |
electroencephalogram | EEG |
finite-difference time-domain | FDTD |
magnetoencephalography | MEG |
rectified linear unit | ReLU |
reservoir computing | RC |
unmanned aerial vehicle | UAV |
References
- Shapiro, A.G.; Todorovic, D. The Oxford Compendium of Visual Illusions; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Necker, L.A. Observations on some remarkable optical phenomena seen in Switzerland; and on an optical phenomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond. Edinb. Philos. Mag. J. Sci. 1832, 1, 329–337. [Google Scholar]
- Washburn, M.; Reagan, C.; Thurston, E. The comparative controllability of the fluctuations of simple and complex ambiguous perspective figures. Am. J. Psychol. 1934, 46, 636–638. [Google Scholar] [CrossRef]
- Fisher, G.H. Ambiguous figure treatments in the art of Salvador Dali. Percept. Psychophys. 1967, 2, 328–330. [Google Scholar] [CrossRef]
- Lindstrøm, T.C.; Kristoffersen, S. ‘Figure it out!’ Psychological perspectives on perception of migration period animal art. Nor. Archaeol. Rev. 2001, 34, 65–84. [Google Scholar] [CrossRef]
- Long, G.M.; Toppino, T.C. Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychol. Bull. 2004, 130, 748–768. [Google Scholar] [CrossRef]
- Kornmeier, J.; Bach, M. The Necker cube–an ambiguous figure disambiguated in early visual processing. Vision Res. 2005, 45, 955–960. [Google Scholar] [CrossRef]
- Conte, E.; Khrennikov, A.Y.; Todarello, O.; Federici, A.; Mendolicchio, L.; Zbilut, J.P. Mental states follow quantum mechanics during perception and cognition of ambiguous figures. Open Syst. Inf. Dyn. 2009, 16, 1–17. [Google Scholar] [CrossRef]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Stonkute, S.; Braun, J.; Pastukhov, A. The role of attention in ambiguous reversals of structure-from-motion. PLoS ONE 2012, 7, e37734. [Google Scholar] [CrossRef]
- Kornmeier, J.; Bach, M. Ambiguous figures—What happens in the brain when perception changes but not the stimulus. Front. Hum. Neurosci. 2012, 6, 51. [Google Scholar] [CrossRef]
- Runnova, A.E.; Hramov, A.E.; Grubov, V.V.; Koronovskii, A.A.; Kurovskaya, M.K.; Pisarchik, A.N. Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images. Chaos Solitons Fractals 2016, 93, 201–206. [Google Scholar] [CrossRef]
- Meilikhov, E.Z.; Farzetdinova, R.M. Bistable perception of ambiguous images: Simple Arrhenius model. Cogn. Neurodyn. 2019, 13, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S.; Pogrebna, G. Linking physics and psychology of bistable perception using an eye blink inspired quantum harmonic oscillator model. arXiv 2023, arXiv:2307.08758. [Google Scholar] [CrossRef]
- Basar-Eroglu, C.; Mathes, B.; Khalaidovski, K.; Brand, A.; Schmiedt-Fehr, C. Altered alpha brain oscillations during multistable perception in schizophrenia. Int. J. Psychophysiol. 2016, 103, 118–128. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yamamoto, M. Effects of the gravitational vertical on the visual perception of reversible figures. Neurosci. Res. 2006, 55, 218–221. [Google Scholar] [CrossRef]
- Clément, G.; Allaway, H.C.M.; Demel, M.; Golemis, A.; Kindrat, A.N.; Melinyshyn, A.N.; Merali, T.; Thirsk, R. Long-duration spaceflight increases depth ambiguity of reversible perspective figures. PLoS ONE 2015, 10, e0132317. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A. Quantum-like brain: “Interference of minds”. Biosystems 2006, 84, 225–241. [Google Scholar] [CrossRef]
- Mindell, A. Deep Democracy Exchange. Quantum Mind: The Edge Between Physics and Psychology. 2012. [Google Scholar]
- Wendt, A. Quantum Mind and Social Science; Cambridge University Press: Cambidge, UK, 2015. [Google Scholar]
- Atmanspacher, H.; Filk, T. A proposed test of temporal nonlocality in bistable perception. J. Math. Psychol. 2010, 54, 314–321. [Google Scholar] [CrossRef]
- Aerts, D.; Arguëlles, J.A. Human perception as a phenomenon of quantization. Entropy 2022, 24, 1207. [Google Scholar] [CrossRef]
- Kauffman, S.A.; Roli, A. What is consciousness? Artificial intelligence, real intelligence, quantum mind and qualia. Biol. J. Linn. Soc. 2022, 139, 530–538. [Google Scholar] [CrossRef]
- Lo, C.; Dinov, I. Investigation of optical illusions on the aspects of gender and age. UCLA USJ 2011, 24. [Google Scholar]
- Gaetz, M.; Weinberg, H.; Rzempoluck, E.; Jantzen, K.J. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube. Cogn. Brain Res. 1998, 6, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Piantoni, G.; Romeijn, N.; Gomez-Herrero, G.; Van Der Werf, Y.D.; Van Someren, E.J.W. Alpha power predicts persistence of bistable perception. Sci. Rep. 2017, 7, 5208. [Google Scholar] [CrossRef] [PubMed]
- Joos, E.; Giersch, A.; Hecker, L.; Schipp, J.; Heinrich, S.P.; van Elst, L.T.; Kornmeier, J. Large EEG amplitude effects are highly similar across Necker cube, smiley, and abstract stimuli. PLoS ONE 2020, 15, e0232928. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Lee, H.; Paik, S.B. Slow rhythmic eye motion predicts periodic alternation of bistable perception. bioRxiv 2020. [Google Scholar] [CrossRef]
- Matsumiya, K.; Furukawa, S. Perceptual decisions interfere more with eye movements than with reach movements. Commun. Biol. 2023, 6, 882. [Google Scholar] [CrossRef]
- Atmanspacher, H.; Filk, T. The Necker-Zeno model for bistable perception. Top. Cogn. Sci. 2013, 5, 800–817. [Google Scholar] [CrossRef]
- Pothos, E.M.; Busemeyer, J.R. Quantum Cognition. Annu. Rev. Psychol. 2022, 73, 749–778. [Google Scholar] [CrossRef]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Pothos, E.M.; Busemeyer, J.R. A quantum probability explanation for violations of ‘rational’ decision theory. Proc. R. Soc. B 2009, 276, 2171–2178. [Google Scholar] [CrossRef]
- Benedek, G.; Caglioti, G. Graphics and Quantum Mechanics–The Necker Cube as a Quantum-like Two-Level System. In Proceedings of the 18th International Conference on Geometry and Graphics, Milan, Italy, 3–7 August 2019; Cocchiarella, L., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 161–172. [Google Scholar]
- Yukalov, V.I.; Sornette, D. Entanglement production in quantum decision making. Phys. At. Nucl. 2010, 73, 559–562. [Google Scholar] [CrossRef]
- Trueblood, J.S.; Busemeyer, J.R. A quantum probability account of order effects in inference. Cogn. Sci. 2011, 35, 1518–1552. [Google Scholar] [CrossRef]
- De Castro, A. On the quantum principles of cognitive learning. Behav. Brain Sci. 2013, 36, 281–282. [Google Scholar] [CrossRef]
- Martin, F.; Carminati, F.; Carminati, G.G. Quantum information theory applied to unconscious and consciousness. NeuroQuantology 2013, 11, 16–33. [Google Scholar] [CrossRef]
- Aerts, D.; Sozzo, S.; Tapia, J. Identifying quantum structures in the Ellsberg paradox. Int. J. Theor. Phys. 2014, 53, 3666–3682. [Google Scholar] [CrossRef]
- Khrennikova, P. A Quantum Framework for ‘Sour Grapes’ in Cognitive Dissonance. In Proceedings of the Quantum Interaction, Filzbach, Switzerland, 30 June–3 July 2014; Atmanspacher, H., Haven, E., Kitto, K., Raine, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 270–280. [Google Scholar]
- Conte, E.; Licata, I.; Alelú-Paz, R. A quantum neurological model of perception-cognition and awareness in ambiguous figures and the case of the Dalmatian dog. J. Behav. Brain Sci. 2015, 5, 61407. [Google Scholar] [CrossRef]
- Broekaert, J.; Basieva, I.; Blasiak, P.; Pothos, E.M. Quantum-like dynamics applied to cognition: A consideration of available options. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160387. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, G.; Strambini, E. Quantum cognition and Bell’s inequality: A model for probabilistic judgment bias. J. Math. Psychol. 2017, 78, 65–75. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I.; Pothos, E.M.; Yamato, I. Quantum probability in decision making from quantum information representation of neuronal states. Sci. Rep. 2018, 8, 16225. [Google Scholar] [CrossRef]
- Rosen, S.M. The strange nature of quantum perception: To see a photon, one must be a photon. J. Mind Behav. 2021, 42, 229–270. [Google Scholar]
- Kovalenko, T.; Sornette, D. The Conjunction Fallacy in Quantum Decision Theory. In Credible Asset Allocation, Optimal Transport Methods, and Related Topics; Sriboonchitta, S., Kreinovich, V., Yamaka, W., Eds.; Springer: Cham, Switzerland, 2022; pp. 127–183. [Google Scholar]
- Ozawa, M.; Khrennikov, A. Application of theory of quantum instruments to psychology: Combination of question order effect with response replicability effect. Entropy 2020, 22, 37. [Google Scholar] [CrossRef]
- Ang, J.W.A.; Maus, G.W. Boosted visual performance after eye blinks. J. Vis. 2020, 20. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L. The Appeal of Parallel Distributed Processing. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations; MIT Press: Cambridge, MA, USA, 1987; pp. 3–44. [Google Scholar]
- Inoue, M.; Nakamoto, K. Dynamics of cognitive interpretations of a Necker cube in a chaos neural network. Prog. Theor. Phys. 1994, 92, 501–508. [Google Scholar] [CrossRef]
- Buesing, L.; Bill, J.; Nessler, B.; Maass, W. Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 2011, 7, e1002211. [Google Scholar] [CrossRef] [PubMed]
- Noest, A.J.; van Wezel, R.J.A. Dynamics of temporally interleaved percept-choice sequences: Interaction via adaptation in shared neural populations. J. Comput. Neurosci. 2012, 32, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Araki, O.; Tsuruoka, Y.; Urakawa, T. A neural network model for exogenous perceptual alternations of the Necker cube. Cogn. Neurodyn. 2020, 14, 229–237. [Google Scholar] [CrossRef]
- Batmanova, A.; Kuc, A.; Maksimenko, V.; Savosenkov, A.; Grigorev, N.; Gordleeva, S.; Kazantsev, V.; Korchagin, S.; Hramov, A.E. Predicting perceptual decision-making errors using EEG and machine learning. Mathematics 2022, 10, 3153. [Google Scholar] [CrossRef]
- Kaneko, K. Chaotic but regular posi-nega switch among coded attractors by cluster-size variation. Phys. Rev. Lett. 1989, 63, 219–223. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef]
- Bausch, J. Recurrent Quantum Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 1368–1379. [Google Scholar]
- Ezhov, A.A.; Ventura, D. Quantum Neural Networks. In Future Directions for Intelligent Systems and Information Sciences: The Future of Speech and Image Technologies, Brain Computers, WWW, and Bioinformatics; Kasabov, N., Ed.; Physica: Heidelberg, Germany, 2000; pp. 213–235. [Google Scholar]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Ngo, T.A.; Nguyen, T.; Thang, T.C. A survey of recent advances in quantum generative adversarial networks. Electronics 2023, 12, 856. [Google Scholar] [CrossRef]
- Fujii, K.; Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 2017, 8, 024030. [Google Scholar] [CrossRef]
- Govia, L.C.G.; Ribeill, G.J.; Rowlands, G.E.; Krovi, H.K.; Ohki, T.A. Quantum reservoir computing with a single nonlinear oscillator. Phys. Rev. Res. 2021, 3, 013077. [Google Scholar] [CrossRef]
- Mujal, P.; Martínez-Peña, R.; Nokkala, J.; García-Beni, J.; Giorgi, G.L.; Soriano, M.C.; Zambrini, R. Opportunities in quantum reservoir computing and extreme learning machines. Adv. Quantum Technol. 2021, 4, 2100027. [Google Scholar] [CrossRef]
- Dudas, J.; Carles, B.; Plouet, E.; Mizrahi, F.A.; Grollier, J.; Marković, D. Quantum reservoir computing implementation on coherently coupled quantum oscillators. NPJ Quantum Inf. 2023, 9, 64. [Google Scholar] [CrossRef]
- Sehrawat, A. Interferometric Neural Networks. arXiv 2023, arXiv:2310.16742. [Google Scholar]
- Sehrawat, A. Image Classification with CNN and QNN. Available online: https://github.com/ArunSehrawat/Image_classification_with_CNN_and_QNN (accessed on 28 November 2023).
- Zoufal, C.; Lucchi, A.; Woerner, S. Quantum Generative Adversarial Networks for learning and loading random distributions. NPJ Quantum Inf. 2019, 5, 103. [Google Scholar] [CrossRef]
- Aston, S.; Hurlbert, A. What #theDress reveals about the role of illumination priors in color perception and color constancy. J. Vis. 2017, 17. [Google Scholar] [CrossRef]
- Lafer-Sousa, R.; Conway, B.R. #TheDress: Categorical perception of an ambiguous color image. J. Vis. 2017, 17. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kim, P. MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence; Apress: Berkeley, CA, USA, 2017. [Google Scholar]
- Lehky, S.R.; Westheimer, G. Binocular rivalry is not chaotic. Proc. R. Soc. B 1995, 259, 71–76. [Google Scholar]
- Sakai, K.; Katayama, T.; Wada, S.; Oiwa, K. Chaos causes perspective reversals for ambiguious patterns. In Proceedings of the Advances in Intelligent Computing—IPMU’94, Paris, France, 4–8 July 1994; Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 463–472. [Google Scholar]
- Shimaoka, D.; Kitajo, K.; Kaneko, K.; Yamaguchi, Y. Transient process of cortical activity during Necker cube perception: From local clusters to global synchrony. Nonlinear Biomed. Phys. 2010, 4, S7. [Google Scholar] [CrossRef]
- Chen, R.; Xiong, Y.; Zhuge, S.; Li, Z.; Chen, Q.; He, Z.; Wu, D.; Hou, F.; Zhou, J. Regulation and prediction of multistable perception alternation. Chaos Solitons Fractals 2023, 172, 113564. [Google Scholar] [CrossRef]
- Babloyantz, A. Chaotic Dynamics in Brain Activity. In Dynamics of Sensory and Cognitive Processing by the Brain; Başar, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 196–202. [Google Scholar]
- McKenna, T.M.; McMullen, T.A.; Shlesinger, M.F. The brain as a dynamic physical system. Neuroscience 1994, 60, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Korn, H.; Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 2003, 326, 787–840. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S. Analogue and physical reservoir computing using water waves: Applications in power engineering and beyond. Energies 2023, 16, 5366. [Google Scholar] [CrossRef]
- Symul, T.; Assad, S.M.; Lam, P.K. Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 2011, 98, 231103. [Google Scholar] [CrossRef]
- Haw, J.Y.; Assad, S.M.; Lance, A.M.; Ng, N.H.Y.; Sharma, V.; Lam, P.K.; Symul, T. Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 2015, 3, 054004. [Google Scholar] [CrossRef]
- Reiser, M.; Wirth, N. Programming in Oberon: Steps beyond Pascal and Modula; ACM Press: New York, NY, USA, 1992. [Google Scholar]
- Herring, C.; Palmore, J.I. Random number generators are chaotic. SIGPLAN Not. 1989, 24, 76–79. [Google Scholar] [CrossRef]
- Fan, F.; Wang, G. Learning from pseudo-randomness with an artificial neural network—Does God play pseudo-dice? IEEE Access 2018, 6, 22987–22992. [Google Scholar] [CrossRef]
- Brustein, R.; Oaknin, D.H. Classical dynamics of quantum fluctuations. Phys. Rev. D 2003, 67, 025010. [Google Scholar] [CrossRef]
- Matsuoka, K. The dynamic model of binocular rivalry. Biol. Cybern. 1984, 49, 201–208. [Google Scholar] [CrossRef]
- Lehky, S.R. An astable multivibrator model of binocular rivalry. Perception 1988, 17, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Stollenwerk, L.; Bode, M. Lateral neural model of binocular rivalry. Neural Comput. 2003, 15, 2863–2882. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Bote, R.; Rinzel, J.; Rubin, N. Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 2007, 98, 1125–1139. [Google Scholar] [CrossRef]
- Shpiro, A.; Curtu, R.; Rinzel, J.; Rubin, N. Dynamical characteristics common to neuronal competition models. J. Neurophysiol. 2007, 97, 462–473. [Google Scholar] [CrossRef]
- Curtu, R.; Shpiro, A.; Rubin, N.; Rinzel, J. Mechanisms for frequency control in neuronal competition models. SIAM J. Appl. Dyn. Syst. 2008, 7, 609–649. [Google Scholar] [CrossRef] [PubMed]
- Gershman, S.J.; Vul, E.; Tenenbaum, J.B. Multistability and perceptual inference. Neural Comput. 2012, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Panagiotaropoulos, T.I.; Kapoor, V.; Logothetis, N.K.; Deco, G. A common neurodynamical mechanism could mediate externally induced and intrinsically generated transitions in visual awareness. PLoS ONE 2013, 8, e0053833. [Google Scholar] [CrossRef]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Gladilin, E.; Eils, R. On the role of spatial phase and phase correlation in vision, illusion, and cognition. Front. Comput. Neurosci. 2015, 9, 45. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Quantum Mechanics; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Sullivan, D.M. Electromagnetic Simulations Using the FDTD Method; IEEE Press: New York, NY, USA, 2000. [Google Scholar]
- Koch, R.; Lado, J.L. Neural network enhanced hybrid quantum many-body dynamical distributions. Phys. Rev. Res. 2021, 3, 033102. [Google Scholar] [CrossRef]
- Hendry, D.; Chen, H.; Feiguin, A. Neural network representation for minimally entangled typical thermal states. Phys. Rev. B 2022, 106, 165111. [Google Scholar] [CrossRef]
- Koch, R.; Lado, J.L. Designing quantum many-body matter with conditional generative adversarial networks. Phys. Rev. Res. 2022, 4, 033223. [Google Scholar] [CrossRef]
- Hampson, K.M.; Mallen, E.A.H. Chaos in ocular aberration dynamics of the human eye. Biomed. Opt. Express 2012, 3, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Paprocki, R.; Lenskiy, A. What does eye-blink rate variability dynamics tell us about cognitive performance? Front. Hum. Neurosci. 2017, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Harezlak, K.; Kasprowski, P. Searching for chaos evidence in eye movement signals. Entropy 2018, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Rickles, D.; Hawe, P.; Shiell, A. A simple guide to chaos and complexity. J. Epidemiol. Community Health. 2007, 61, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Aerts, D.; D’Hooghe, B.; Sozzo, S. A Quantum Cognition Analysis of the Ellsberg Paradox. In Proceedings of the Quantum Interaction, Aberdeen, UK, 26–29 June 2011; Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 95–104. [Google Scholar]
- Aerts, D.; Sozzo, S.; Tapia, J. A Quantum Model for the Ellsberg and Machina Paradoxes. In Proceedings of the Quantum Interaction, Paris, France, 27–29 June 2012; Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 48–59. [Google Scholar]
- Maksymov, I.S.; Pogrebna, G. The physics of preference: Unravelling imprecision of human preferences through magnetisation dynamics. arXiv 2023, arXiv:2310.00267. [Google Scholar] [CrossRef]
- Smith, N.E. A new angle on the freemish crate. Perception 1984, 13, 153–154. [Google Scholar] [CrossRef]
- Céspedes, P.; Cisternas, V.H. Necker. Available online: https://boardgamegeek.com/boardgame/203106/necker (accessed on 23 November 2023).
- Superliminal. Available online: https://store.steampowered.com/app/1049410/Superliminal/ (accessed on 23 November 2023).
- Khalid, M.N.A.; Iida, H. Objectivity and subjectivity in games: Understanding engagement and addiction Mechanism. IEEE Access 2021, 9, 65187–65205. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Kuperwajs, I.; Schütt, H.H.; Ma, W.J. Using deep neural networks as a guide for modeling human planning. Sci. Rep. 2023, 13, 20269. [Google Scholar] [CrossRef]
- Clément, G.; Skinner, A.; Lathan, C. Distance and size perception in astronauts during long-duration spaceflight. Life 2013, 3, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.; Scaramuzza, D. Human-piloted drone racing: Visual processing and control. IEEE Robot. Autom. Lett. 2021, 6, 3467–3474. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Doya, K.; Ishii, S.; Pouget, A.; Rao, R.P.N. Bayesian Brain; MIT Press: Cambridge, UK, 2007. [Google Scholar]
- Fox, C.W.; Stafford, T. Maximum utility unitary coherent perception vs. the Bayesian brain. Proc. Annu. Meet. Cogn. Sci. Soc. 2012, 34, 336. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Pira, L.; Ferrie, C. An invitation to distributed quantum neural networks. Quantum Mach. Intell. 2023, 5, 23. [Google Scholar] [CrossRef]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Nakajima, K.; Fisher, I. Reservoir Computing; Springer: Berlin, Germany, 2021. [Google Scholar]
- Nakajima, M.; Inoue, K.; Tanaka, K.; Kuniyoshi, Y.; Hashimoto, T.; Nakajima, K. Physical deep learning with biologically inspired training method: Gradient-free approach for physical hardware. Nat. Commun. 2022, 13, 7847. [Google Scholar] [CrossRef]
- Gauthier, D.J.; Bollt, E.; Griffith, A.; Barbosa, W.A.S. Next generation reservoir computing. Nat. Commun. 2021, 12, 5564. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Pototsky, A.; Suslov, S.A. Neural echo state network using oscillations of gas bubbles in water. Phys. Rev. E 2021, 105, 044206. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksymov, I.S. Quantum-Inspired Neural Network Model of Optical Illusions. Algorithms 2024, 17, 30. https://doi.org/10.3390/a17010030
Maksymov IS. Quantum-Inspired Neural Network Model of Optical Illusions. Algorithms. 2024; 17(1):30. https://doi.org/10.3390/a17010030
Chicago/Turabian StyleMaksymov, Ivan S. 2024. "Quantum-Inspired Neural Network Model of Optical Illusions" Algorithms 17, no. 1: 30. https://doi.org/10.3390/a17010030
APA StyleMaksymov, I. S. (2024). Quantum-Inspired Neural Network Model of Optical Illusions. Algorithms, 17(1), 30. https://doi.org/10.3390/a17010030