Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction
2.2. Modelling Methodology
2.2.1. Traditional ML Algorithms
2.2.2. DL Algorithms
2.2.3. Model Evaluation and Hyperparameter Tuning
2.3. Decompensation Score
2.4. Model Interpretation
2.4.1. Model Interpretation via SHAP Values
2.4.2. Understanding Patient’s Predicted Decompensation Risk Sequences
3. Results
3.1. Dataset Used in This Study
3.2. Model Performance
3.3. Decompensation Risk Curve Prediction and Decompensation Score
3.4. Model Interpretability
4. Discussion
4.1. Model Selection and Explanation
4.2. Key Risk Factors in Decompensation Prediction
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veldhuis, L.I.; Woittiez, N.J.C.; Nanayakkara, P.W.B.; Ludikhuize, J. Artificial Intelligence for the Prediction of In-Hospital Clinical Deterioration: A Systematic Review. Crit. Care Explor. 2022, 4, e0744. [Google Scholar] [CrossRef] [PubMed]
- Kia, A.; Timsina, P.; Joshi, H.N.; Klang, E.; Gupta, R.R.; Freeman, R.M.; Reich, D.L.; Tomlinson, M.S.; Dudley, J.T.; Kohli-Seth, R.; et al. MEWS++: Enhancing the prediction of clinical deterioration in admitted patients through a machine learning model. J. Clin. Med. 2020, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, V.M.; Goldsmith, M.P.; Shi, L.; Simpao, A.F.; Gálvez, J.A.; Naim, M.Y.; Nadkarni, V.; Gaynor, J.W.; Tsui, F. Early prediction of clinical deterioration using data-driven machine-learning modeling of electronic health records. J. Thorac. Cardiovasc. Surg. 2022, 164, 211–222.e3. [Google Scholar] [CrossRef] [PubMed]
- Thorsen-Meyer, H.-C.; Nielsen, A.B.; Nielsen, A.P.; Kaas-Hansen, B.S.; Toft, P.; Schierbeck, J.; Strøm, T.; Chmura, P.J.; Heimann, M.; Dybdahl, L.; et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records. Lancet Digit. Health 2020, 2, e179–e191. [Google Scholar] [CrossRef]
- Ho, L.V.; Aczon, M.; Ledbetter, D.; Wetzel, R. Interpreting a recurrent neural network’s predictions of ICU mortality risk. J. Biomed. Inform. 2021, 114, 103672. [Google Scholar] [CrossRef]
- Leung, K.K.; Rooke, C.; Smith, J.; Zuberi, S.; Volkovs, M. Temporal Dependencies in Feature Importance for Time Series Predictions. arxiv 2021, arXiv:2107.14317. [Google Scholar]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Solares, J.R.A.; Raimondi, F.E.D.; Zhu, Y.; Rahimian, F.; Canoy, D.; Tran, J.; Gomes, A.C.P.; Payberah, A.H.; Zottoli, M.; Nazarzadeh, M.; et al. Deep learning for electronic health records: A comparative review of multiple deep neural architectures. J. Biomed. Inform. 2020, 101, 103337. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Hao, S.; Moody, B.; Gow, B.; et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data 2023, 10, 1. [Google Scholar] [CrossRef]
- Shao, J.; Zhong, B. Last observation carry-forward and last observation analysis. Stat. Med. 2003, 22, 2429–2441. [Google Scholar] [CrossRef]
- Harutyunyan, H.; Khachatrian, H.; Kale, D.C.; Ver Steeg, G.; Galstyan, A. Multitask learning and benchmarking with clinical time series data. Sci. Data 2019, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Pattern Recognition and Machine Learning, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Murugan, P. Learning the Sequential Temporal Information with Recurrent Neural Networks. arXiv 2018, arXiv:1807.02857. [Google Scholar]
- Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020, 32, 17351–17360. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Williams, B. The National Early Warning Score: From concept to NHS implementation. Clin. Med. J. R. Coll. Physicians Lond. 2022, 22, 499. [Google Scholar] [CrossRef]
- Molnar. 9.6 SHAP (SHapley Additive Explanations). A Guide for Making Black Box Models Explainable. 2021. Available online: https://christophm.github.io/interpretable-ml-book (accessed on 2 November 2023).
- Jeyakumar, J.V.; Noor, J.; Cheng, Y.H.; Garcia, L.; Srivastava, M. How can I explain this to you? An empirical study of deep neural network explanation methods. Adv. Neural Inf. Process. Syst. 2020, 33, 4211–4222. [Google Scholar]
- Kabrhel, C.; Okechukwu, I.; Hariharan, P.; Takayesu, J.K.; MacMahon, P.; Haddad, F.; Chang, Y. Factors associated with clinical deterioration shortly after PE. Thorax 2014, 69, 835–842. [Google Scholar] [CrossRef]
- Yan, B.; Song, L.; Guo, J.; Wang, Y.; Peng, L.; Li, D. Association Between Clinical Characteristics and Short-Term Outcomes in Adult Male COVID-19 Patients With Mild Clinical Symptoms: A Single-Center Observational Study. Front. Med. 2021, 7, 571396. [Google Scholar] [CrossRef]
- Lee, J.-R.; Jung, Y.-K.; Hong, S.-B.; Huh, J.W. Predictors of Repeat Medical Emergency Team Activation in Deteriorating Ward Patients: A Retrospective Cohort Study. J. Clin. Med. 2022, 11, 1736. [Google Scholar] [CrossRef]
- Billoir, P.; Alexandre, K.; Duflot, T.; Roger, M.; Miranda, S.; Goria, O.; Joly, L.M.; Demeyere, M.; Feugray, G.; Brunel, V.; et al. Investigation of Coagulation Biomarkers to Assess Clinical Deterioration in SARS-CoV-2 Infection. Front. Med. 2021, 8, 670694. [Google Scholar] [CrossRef]
- Ortega-Martorell, S.; Olier, I.; Johnston, B.W.; Welters, I.D. Sepsis-induced coagulopathy is associated with new episodes of atrial fibrillation in patients admitted to critical care in sinus rhythm. Front. Med. 2023, 10, 1230854. [Google Scholar] [CrossRef]
- Tekle, E.; Gelaw, Y.; Dagnew, M.; Gelaw, A.; Negash, M.; Kassa, E.; Bizuneh, S.; Wudineh, D.; Asrie, F. Risk stratification and prognostic value of prothrombin time and activated partial thromboplastin time among COVID-19 patients. PLoS ONE 2022, 17, e0272216. [Google Scholar] [CrossRef]
- Sigal, S.H.; Sherman, Z.; Jesudian, A. Clinical Implications of Thrombocytopenia for the Cirrhotic Patient. Hepatic Med. Evid. Res. 2020, 12, 49–60. [Google Scholar] [CrossRef]
- Surana, P.; Hercun, J.; Takyar, V.; Kleiner, D.E.; Heller, T.; Koh, C. Platelet count as a screening tool for compensated cirrhosis in chronic viral hepatitis. World J. Gastrointest. Pathophysiol. 2021, 12, 40–50. [Google Scholar] [CrossRef]
- Martos-Benítez, F.D.; Soler-Morejón, C.d.D.; Lara-Ponce, K.X.; Orama-Requejo, V.; Burgos-Aragüez, D.; Larrondo-Muguercia, H.; Lespoir, R.W. Critically ill patients with cancer: A clinical perspective. World J. Clin. Oncol. 2020, 11, 809–835. [Google Scholar] [CrossRef]
- Schellongowski, P.; Sperr, W.R.; Wohlfarth, P.; Knoebl, P.; Rabitsch, W.; Watzke, H.H.; Staudinger, T. Critically ill patients with cancer: Chances and limitations of intensive care medicine—A narrative review. ESMO Open 2016, 1, e000018. [Google Scholar] [CrossRef]
- NICE. Platelets—Abnormal Counts and Cancer|Clinical Knowledge Summary|National Institute for Health and Care Excellence (NICE). 2021. Available online: https://cks.nice.org.uk/topics/platelets-abnormal-counts-cancer/ (accessed on 1 November 2023).
- Mounce, L.T.; Hamilton, W.; Bailey, S.E. Cancer incidence following a high-normal platelet count: Cohort study using electronic healthcare records from English primary care. Br. J. Gen. Pract. 2020, 70, e622–e628. [Google Scholar] [CrossRef]
- Aoun, M.; Tabbah, R. Case report: Severe bradycardia, a reversible cause of “Cardio-Renal-Cerebral Syndrome”. BMC Nephrol. 2016, 17, 162. [Google Scholar] [CrossRef]
- Mozos, I. Arrhythmia risk in liver cirrhosis. World J. Hepatol. 2015, 7, 662–672. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Z.; Yang, L.; Yang, C.; Song, M. Risk Factors of Atrial Arrhythmia in Patients With Liver Cirrhosis: A Retrospective Study. Front. Cardiovasc. Med. 2021, 8, 704073. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Alburikan, K.; Metra, M.; Rodgers, J.E. Acute Decompensated Heart Failure Update. Curr. Cardiol. Rev. 2015, 11, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.; Moura, B.; Metra, M.; Böhm, M.; Bauersachs, J.; Ben Gal, T.; Adamopoulos, S.; Abdelhamid, M.; Bistola, V.; Čelutkienė, J.; et al. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2021, 23, 872–881. [Google Scholar] [CrossRef]
- DiMarco, J.P. Atrial Fibrillation and Acute Decompensated Heart Failure. Circ. Heart Fail. 2009, 2, 72–73. [Google Scholar] [CrossRef]
- Ortega-Martorell, S.; Pieroni, M.; Johnston, B.W.; Olier, I.; Welters, I.D. Development of a Risk Prediction Model for New Episodes of Atrial Fibrillation in Medical-Surgical Critically Ill Patients Using the AmsterdamUMCdb. Front. Cardiovasc. Med. 2022, 9, 897709. [Google Scholar] [CrossRef]
- Mendes, F.d.S.N.S.; Atié, J.; Garcia, M.I.; Gripp, E.d.A.; de Sousa, A.S.; Feijó, L.A.; Xavier, S.S. Atrial fibrillation in decompensated heart failure: Associated factors and in-hospital outcome. Arq. Bras. Cardiol. 2014, 103, 315–322. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, H.; Kim, K.H.; Yoo, B.; Kang, S.; Baek, S.H.; Jeon, E.; Kim, J.; Cho, M.; Chae, S.C.; et al. Heart failure and atrial fibrillation: Tachycardia-mediated acute decompensation. ESC Heart Fail. 2021, 8, 2816–2825. [Google Scholar] [CrossRef]
- Muser, D.; Castro, S.A.; Liang, J.J.; Santangeli, P. Identifying risk and management of acute haemodynamic decompensation during catheter ablation of ventricular tachycardia. Arrhythmia Electrophysiol. Rev. 2018, 7, 282–287. [Google Scholar] [CrossRef]
- Wichterle, D.; Peichl, P.; Stojadinovic, P.; Haskova, J.; Borisincova, E.; Sevcik, A.; Sincakova, E.; Kotyza, V.; Cihak, R.; Kautzner, J. Periprocedural acute hemodynamic decompensation associated with substrate-based ablation of ventricular tachycardia in patients with structural heart disease—Rare and nonpredictable event. Europace 2023, 25, euad122-339. [Google Scholar] [CrossRef]
- Bezati, S.; Velliou, M.; Ventoulis, I.; Simitsis, P.; Parissis, J.; Polyzogopoulou, E. Infection as an under-recognized precipitant of acute heart failure: Prognostic and therapeutic implications. Heart Fail. Rev. 2023, 28, 893–904. [Google Scholar] [CrossRef]
- Oh, G.C.; Cho, H.-J. Blood pressure and heart failure. Clin. Hypertens. 2020, 26, 1. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Hu, H.-Y.; Chou, Y.-J.; Huang, N.; Chou, Y.-C.; Li, C.-P. High Blood Pressure and All-Cause and Cardiovascular Disease Mortalities in Community-Dwelling Older Adults. Medicine 2015, 94, e2160. [Google Scholar] [CrossRef]
- Wajngarten, M.; Silva, G.S. Hypertension and Stroke: Update on Treatment. Eur. Cardiol. Rev. 2019, 14, 111–115. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, S.H.; Jeon, J.S.; Noh, H.; Han, D.C.; Kim, H. Association between blood pressure and the risk of chronic kidney disease in treatment-naïve hypertensive patients. Kidney Res. Clin. Pract. 2022, 41, 31–42. [Google Scholar] [CrossRef]
- Vaes, B.; Beke, E.; Truyers, C.; Elli, S.; Buntinx, F.; Verbakel, J.Y.; Goderis, G.; Van Pottelbergh, G. The correlation between blood pressure and kidney function decline in older people: A registry-based cohort study. BMJ Open 2015, 5, e007571. [Google Scholar] [CrossRef]
- Nazarzadeh, M.; Bidel, Z.; Mohseni, H.; Canoy, D.; Pinho-Gomes, A.-C.; Hassaine, A.; Dehghan, A.; Tregouet, D.-A.; Smith, N.L.; Rahimi, K.; et al. Blood pressure and risk of venous thromboembolism: A cohort analysis of 5.5 million UK adults and Mendelian randomization studies. Cardiovasc. Res. 2022, 119, 835–842. [Google Scholar] [CrossRef]
- Hibino, M.; Otaki, Y.; Kobeissi, E.; Pan, H.; Hibino, H.; Taddese, H.; Majeed, A.; Verma, S.; Konta, T.; Yamagata, K.; et al. Blood Pressure, Hypertension, and the Risk of Aortic Dissection Incidence and Mortality: Results From the J-SCH Study, the UK Biobank Study, and a Meta-Analysis of Cohort Studies. Circulation 2022, 145, 633–644. [Google Scholar] [CrossRef]
- Vahdatpour, C.; Collins, D.; Goldberg, S. Cardiogenic Shock. J. Am. Heart Assoc. 2019, 8, e011991. [Google Scholar] [CrossRef]
- Jones, C.D.; Loehr, L.R.; Franceschini, N.; Rosamond, W.D.; Chang, P.P.; Shahar, E.; Couper, D.J.; Rose, K.M. Orthostatic hypotension as a risk factor for incident heart failure: The atherosclerosis risk in communities study. Hypertension 2012, 59, 913–918. [Google Scholar] [CrossRef]
- Maheshwari, K.; Nathanson, B.H.; Munson, S.H.; Khangulov, V.; Stevens, M.; Badani, H.; Khanna, A.K.; Sessler, D.I. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensiv. Care Med. 2018, 44, 857–867. [Google Scholar] [CrossRef]
- van der Ven, W.; Schuurmans, J.; Schenk, J.; Roerhorst, S.; Cherpanath, T.; Lagrand, W.; Thoral, P.; Elbers, P.; Tuinman, P.; Scheeren, T.; et al. Monitoring, management, and outcome of hypotension in Intensive Care Unit patients, an international survey of the European Society of Intensive Care Medicine. J. Crit. Care 2021, 67, 118–125. [Google Scholar] [CrossRef]
Method | Hyperparameter | Options |
---|---|---|
SVM | Kernel | Radial basis, polynomial and sigmoid |
Technique | Grid search cross-validation | |
Gamma | 1, 10, 0.1 and auto | |
Cost | 1, 0.1 and 0.01 | |
RF | Bootstrap | True, False |
Technique | Randomised search cross-validation | |
Maximum Depth | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None | |
Max features | Auto, sqrt | |
Minimum leaf samples | 1, 2, 4 | |
Minimum sample split | 2, 5, 10 | |
Number of trees | 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 | |
LSTM | LSTM units | 240, 64, 120 |
Dropout Layers | 0.5, none | |
Dense Layers | 180, 100, 24 | |
CNN-LSTM | Conv1D Filters | 80, 128 |
Dropout Layers | 0.6, none, 0.7 | |
MaxPooling1D pool sizes | 3, 5, 1 | |
Flatten layers | Yes, No | |
LSTM units | 64 | |
Dense Layers | 48, 24 | |
Activation functions | RELU, SELU, ELU |
Variable | Statistics | Min, Max | % Missing Values | Imputed Value |
---|---|---|---|---|
Age [years] | 67 [55, 77] | 18, 89 | 0 | - |
Height [cm] | 170 [162.8, 177.9] | 53.2, 231.1 | 55.23 | 170 |
Weight [kg] | 80.4 [67.6, 96.5] | 32.5, 296.8 | 2.17 | 81 |
Temperature [°C] | 36.8 [36.6, 37.2] | 23.1, 43.1 | 0.2 | 36.6 |
Heart Rate [beats per min] | 84.8 [73, 97] | 15, 295 | 0.001 | 86 |
Respiratory Rate [breaths per min] | 19.5 [16, 23.5] | 5.3, 280 | 0.02 | 19 |
Fraction Inspired Oxygen [%] | 40 [40, 50] | 20, 100 | 24.44 | 0.21 |
Oxygen Saturation [%] | 97 [95, 99] | 42, 100 | 0.004 | - |
GCS Eye Response | 4 [3, 4] | 1, 4 | 0.02 | 4 |
GCS Motor Response | 6 [5, 6] | 1, 6 | 0.02 | 6 |
GCS Verbal Response | 4 [1, 5] | 1, 5 | 0.02 | 5 |
GCS Total Response | 14 [10, 15] | 3, 15 | 0.02 | 15 |
Glucose [mg/dL] | 128 [107, 159] | 33, 1884 | 0.1 | 128 |
Haemoglobin [g/dL] | 9.7 [8.5, 11.2] | 4.8, 21.1 | 0.20 | - |
Platelet count [K/uL] | 190 [128, 270] | 54, 1475 | 0.19 | - |
Diastolic Blood Pressure [mmHg] | 61 [53, 72] | 34, 338 | 0.01 | 59 |
Mean Blood Pressure [mmHg] | 77 [68.0, 88] | 14, 330 | 0.01 | 77 |
Systolic Blood Pressure [mmHg] | 118 [104.5, 134] | 46, 365 | 0.01 | 118 |
Blood pH Level | 7.41 [7.36, 7.45] | 6.68, 7.93 | 27.54 | 7.4 |
Capillary Refill [yes] | 4.26% | 0, 1 | 6.95 | 0 |
Prothrombin Time [sec] | 13.7 [12.4, 16] | 7.1, 100 | 4.90 | 11 |
Magnesium [mg/dL] | 2.1 [1.9, 2.3] | 1.0, 14.2 | 0.70 | 1.9 |
Model | Balanced acc. | PPV | NPV | AUC-PR | AUC-ROC | MCC |
---|---|---|---|---|---|---|
LR | 0.65 [0.64, 0.66] | 0.68 [0.66, 0.70] | 0.95 [0.94, 0.96] | 0.43 [0.40, 0.46] | 0.84 [0.80, 0.88] | 0.17 [0.16, 0.18] |
SVM | 0.61 [0.60, 0.62] | 0.79 [0.78, 0.80] | 0.96 [0.95, 0.97] | 0.44 [0.43, 0.45] | 0.85 [0.83, 0.87] | 0.30 [0.29, 0.31] |
RF | 0.84 [0.83, 0.85] | 0.80 [0.80, 0.82] | 0.96 [0.96, 0.97] | 0.50 [0.48, 0.53] | 0.88 [0.86, 0.90] | 0.34 [0.33, 0.35] |
LSTM | 0.82 [0.80, 0.84] | 0.71 [0.70, 0.72] | 0.97 [0.96, 0.98] | 0.49 [0.48, 0.50] | 0.88 [0.86, 0.90] | 0.33 [0.32, 0.34] |
CNN-LSTM | 0.83 [0.82, 0.84] | 0.80 [0.78, 0.82] | 0.96 [0.95, 0.97] | 0.51 [0.50, 0.52] | 0.90 [0.89, 0.91] | 0.34 [0.33, 0.35] |
Algorithm | Hyperparameter | Best Parameter |
---|---|---|
SVM | Kernel | Radial Basis |
Gamma | 0.01 | |
Cost | 1 | |
RF | Bootstrap | True |
Maximum Depth | 50 | |
Max features | sqrt | |
Minimum leaf samples | 2 | |
Minimum sample split | 10 | |
Number of trees | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aikodon, N.; Ortega-Martorell, S.; Olier, I. Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning. Algorithms 2024, 17, 6. https://doi.org/10.3390/a17010006
Aikodon N, Ortega-Martorell S, Olier I. Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning. Algorithms. 2024; 17(1):6. https://doi.org/10.3390/a17010006
Chicago/Turabian StyleAikodon, Nosa, Sandra Ortega-Martorell, and Ivan Olier. 2024. "Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning" Algorithms 17, no. 1: 6. https://doi.org/10.3390/a17010006
APA StyleAikodon, N., Ortega-Martorell, S., & Olier, I. (2024). Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning. Algorithms, 17(1), 6. https://doi.org/10.3390/a17010006