Improving Re-Identification by Estimating and Utilizing Diverse Uncertainty Types for Embeddings
Abstract
:1. Introduction
- In contrast to related work, we estimate three different types of uncertainty for feature vectors and, based on our experiments, we emphasize the individual value of diverse uncertainty types for improving the embedding and thereby the re-identification.
- We show that our distributional uncertainty estimate enables us to measure the degree to which an input is out-of-distribution, which, based on literature, is a strong indicator that the extracted values actually represent distributional uncertainty.
- We utilize the estimated model uncertainty vector to perform element-wise modifications to the feature vector, and thereby improve the person re-identification performance notably over an already strong baseline.
2. Related Work
2.1. Uncertainty Quantification for Feature Vectors
2.1.1. Quantification of Data Uncertainty
Probabilistic Embeddings for Data Uncertainty Estimation
Alternative to Probabilistic Embeddings
2.1.2. Quantification of Model Uncertainty
Bayesian Neural Networks for Model Uncertainty Estimation
Joint Estimation of Data and Model Uncertainty
2.1.3. Quantification of Distributional Uncertainty
2.2. Utilization of Uncertainties
2.2.1. Utilization of Uncertainty during Training
2.2.2. Utilization of Uncertainty during Inference
Utilization of Uncertainty to Filter Out Unsuitable Inputs
Utilization of Distributional Uncertainty to Detect Out-of-Distribution Data
Utilization of Uncertainty for Feature Vectors to Detect Out-of-Distribution Data
Utilization of Uncertainty for Multi-Modality, Multi-View, and Multi-Shot
Utilization of Uncertainty to Improve the Feature Vector
3. Uncertainty Estimation in Neural Networks — Mathematics and Algorithm
3.1. Mathematical Theory on Modeling Uncertainty
3.1.1. Distinction of Model, Data, and Distributional Uncertainty
3.1.2. Mathematical Model
3.2. Value of Quantified Uncertainty
3.2.1. Individual Value of Model Uncertainty
3.2.2. Individual Value of Distributional Uncertainty
3.2.3. Individual Value of Data Uncertainty
3.3. Uncertainty Estimation for Embedding Vectors
3.3.1. Bayesian Module
Algorithm 1: Bayesian Module |
Discussion of the Number of Weight Samples during Training
3.3.2. Embedding Heads
3.3.3. Estimation of Model Uncertainty
3.3.4. Estimation of Data Uncertainty
3.3.5. Estimation of Distributional Uncertainty
3.3.6. Obtaining a Scalar Uncertainty Quantifier
3.3.7. Loss
3.3.8. Training
Learning a Feature Embedding
Benchmarking
3.4. Alignment of the Estimation of the Three Uncertainty Types with the Mathematical Theory
3.4.1. Model Uncertainty
3.4.2. Data Uncertainty
3.4.3. Distributional Uncertainty
4. Experiments
4.1. Experimental Setup
4.1.1. Dataset
4.1.2. Implementation Details
4.2. Analysis of Correlation between Uncertainty Types
4.3. Utilization of Model Uncertainty during Inference
4.3.1. Comparison with the State of the Art
4.3.2. Relationship between the Feature Vector and Estimated Model Uncertainty
4.3.3. Simple Solutions Prove to Be Ineffective
Replacement of the Feature Vector by the Estimated Uncertainty Vector
Simple Score-Level Fusion
4.3.4. Utilizing the Estimated Model Uncertainty to Adjust Feature Vectors
Adjusting the Feature Vector
Estimating the Hyperparameter c Based on the Uncertainty Vector
Conclusion on the Utilization of Uncertainties
Further Investigations
4.4. Experimental Validation of the Distributional Uncertainty Estimate
4.4.1. Out-of-Distribution Sets
Training Data (T) and Query (Q)
Full Human (D1)
Human Fragments (D2)
Objects (D3)
Background/Blur (D4)
Labeling Process
4.4.2. Analysis of Uncertainty Score Distributions
Experimental Setup
Model Uncertainty Score Distribution
Data Uncertainty Score Distribution
Distributional Uncertainty Score Distribution
4.4.3. Uncertainty Score Distributions When Controlling for Another Uncertainty Type
Data Uncertainty in Case of Low Distributional Uncertainty
Distributional Uncertainty in Case of Low Data Uncertainty
Data Uncertainty in Case of High Distributional Uncertainty
Summary
5. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daily, M.; Medasani, S.; Behringer, R.; Trivedi, M. Self-driving cars. Computer 2017, 50, 18–23. [Google Scholar] [CrossRef]
- Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixao, T.M.; Mutz, F.; et al. Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [Google Scholar] [CrossRef]
- Wang, L.; Gao, R.; Váncza, J.; Krüger, J.; Wang, X.V.; Makris, S.; Chryssolouris, G. Symbiotic human-robot collaborative assembly. CIRP Ann. 2019, 68, 701–726. [Google Scholar] [CrossRef]
- Eisenbach, M.; Aganian, D.; Köhler, M.; Stephan, B.; Schröter, C.; Gross, H.M. Visual Scene Understanding for Enabling Situation-Aware Cobots. In Proceedings of the International Conference on Automation Science and Engineering (CASE), IEEE, Lyon, France, 23–27 August 2021. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning (ICML), PMLR, New York, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; Volume 31, pp. 5580–5590. [Google Scholar]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Mena, J.; Pujol, O.; Vitrià, J. A survey on uncertainty estimation in deep learning classification systems from a bayesian perspective. ACM Comput. Surv. (CSUR) 2021, 54, 1–35. [Google Scholar] [CrossRef]
- He, W.; Jiang, Z. A survey on uncertainty quantification methods for deep neural networks: An uncertainty source perspective. arXiv 2023, arXiv:2302.13425. [Google Scholar]
- Kraus, F.; Dietmayer, K. Uncertainty estimation in one-stage object detection. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (itsc), IEEE, Auckland, New Zealand, 27–30 October 2019; pp. 53–60. [Google Scholar]
- Harakeh, A.; Smart, M.; Waslander, S.L. Bayesod: A bayesian approach for uncertainty estimation in deep object detectors. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Paris, France, 31 May–31 August 2020; pp. 87–93. [Google Scholar]
- Gasperini, S.; Haug, J.; Mahani, M.A.N.; Marcos-Ramiro, A.; Navab, N.; Busam, B.; Tombari, F. CertainNet: Sampling-free uncertainty estimation for object detection. IEEE Robot. Autom. Lett. 2021, 7, 698–705. [Google Scholar] [CrossRef]
- Schubert, M.; Kahl, K.; Rottmann, M. Metadetect: Uncertainty quantification and prediction quality estimates for object detection. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, Shenzhen, China, 18–22 July 2021; pp. 1–10. [Google Scholar]
- Jungo, A.; Reyes, M. Assessing reliability and challenges of uncertainty estimations for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings, Part II 22. Springer: Berlin/Heidelberg, Germany, 2019; pp. 48–56. [Google Scholar]
- Mehrtash, A.; Wells, W.M.; Tempany, C.M.; Abolmaesumi, P.; Kapur, T. Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 2020, 39, 3868–3878. [Google Scholar] [CrossRef]
- Hu, P.; Sclaroff, S.; Saenko, K. Uncertainty-aware learning for zero-shot semantic segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 21713–21724. [Google Scholar]
- Huang, P.Y.; Hsu, W.T.; Chiu, C.Y.; Wu, T.F.; Sun, M. Efficient uncertainty estimation for semantic segmentation in videos. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 520–535. [Google Scholar]
- Guo, H.; Wang, H.; Ji, Q. Uncertainty-guided probabilistic transformer for complex action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 20052–20061. [Google Scholar]
- Vilnis, L.; McCallum, A. Word representations via gaussian embedding. arXiv 2014, arXiv:1412.6623. [Google Scholar]
- Shi, Y.; Jain, A.K.; Kalka, N.D. Probabilistic Face Embeddings. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6901–6910. [Google Scholar]
- Taha, A.; Chen, Y.T.; Yang, X.; Misu, T.; Davis, L. Exploring uncertainty in conditional multi-modal retrieval systems. arXiv 2019, arXiv:1901.07702. [Google Scholar]
- Taha, A.; Chen, Y.T.; Misu, T.; Shrivastava, A.; Davis, L. Unsupervised data uncertainty learning in visual retrieval systems. arXiv 2019, arXiv:1902.02586. [Google Scholar]
- Hama, K.; Matsubara, T.; Uehara, K.; Cai, J. Exploring uncertainty measures for image-caption embedding-and-retrieval task. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–19. [Google Scholar] [CrossRef]
- Dou, Z.; Wang, Z.; Chen, W.; Li, Y.; Wang, S. Reliability-aware prediction via uncertainty learning for person image retrieval. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 588–605. [Google Scholar]
- Malinin, A.; Gales, M.J.F. Predictive Uncertainty Estimation via Prior Networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; Volume 31, pp. 7047–7058. [Google Scholar]
- Nandy, J.; Hsu, W.; Lee, M.L. Towards Maximizing the Representation Gap between In-Domain and Out-of-Distribution Examples. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual, 6–12 December 2020; Volume 33, pp. 9239–9250. [Google Scholar]
- An, S.; Jammalamadaka, N.; Chong, E. Maximum entropy information bottleneck for uncertainty-aware stochastic embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 3809–3818. [Google Scholar]
- Scott, T.R.; Ridgeway, K.; Mozer, M.C. Stochastic prototype embeddings. arXiv 2019, arXiv:1909.11702. [Google Scholar]
- Neelakantan, A.; Shankar, J.; Passos, A.; McCallum, A. Efficient non-parametric estimation of multiple embeddings per word in vector space. arXiv 2015, arXiv:1504.06654. [Google Scholar]
- Chang, J.; Lan, Z.; Cheng, C.; Wei, Y. Data uncertainty learning in face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5710–5719. [Google Scholar]
- Chen, K.; Lv, Q.; Yi, T. Fast and reliable probabilistic face embeddings in the wild. arXiv 2021, arXiv:2102.04075. [Google Scholar]
- Li, S.; Xu, J.; Xu, X.; Shen, P.; Li, S.; Hooi, B. Spherical confidence learning for face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 15629–15637. [Google Scholar]
- Zhu, Q.; Mao, Q.; Zhang, J.; Huang, X.; Zheng, W. Towards A Robust Group-level Emotion Recognition via Uncertainty-Aware Learning. arXiv 2023, arXiv:2310.04306. [Google Scholar]
- Sun, J.J.; Zhao, J.; Chen, L.C.; Schroff, F.; Adam, H.; Liu, T. View-invariant probabilistic embedding for human pose. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part V 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 53–70. [Google Scholar]
- Warburg, F.; Jørgensen, M.; Civera, J.; Hauberg, S. Bayesian triplet loss: Uncertainty quantification in image retrieval. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 12158–12168. [Google Scholar]
- Li, X.; Dai, Y.; Ge, Y.; Liu, J.; Shan, Y.; Duan, L.Y. Uncertainty modeling for out-of-distribution generalization. arXiv 2022, arXiv:2202.03958. [Google Scholar]
- Karpukhin, I.; Dereka, S.; Kolesnikov, S. Probabilistic embeddings revisited. Vis. Comput. 2023, 40, 4373–4386. [Google Scholar] [CrossRef]
- Liang, S.; Dai, W.; Wei, Y. Uncertainty Learning for Noise Resistant Sketch-Based 3D Shape Retrieval. IEEE Trans. Image Process. 2021, 30, 8632–8643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wonka, P. Point cloud instance segmentation using probabilistic embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 8883–8892. [Google Scholar]
- Li, W.; Huang, X.; Lu, J.; Feng, J.; Zhou, J. Learning probabilistic ordinal embeddings for uncertainty-aware regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 13896–13905. [Google Scholar]
- Zhou, J.; Tang, Y.; Su, B.; Wu, Y. Unsupervised Embedding Learning from Uncertainty Momentum Modeling. arXiv 2021, arXiv:2107.08892. [Google Scholar]
- Park, J.; Lee, J.; Kim, I.J.; Sohn, K. Probabilistic representations for video contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 14711–14721. [Google Scholar]
- Kirchhof, M.; Kasneci, E.; Oh, S.J. Probabilistic contrastive learning recovers the correct aleatoric uncertainty of ambiguous inputs. In Proceedings of the International Conference on Machine Learning (ICML). PMLR, Seattle, WA, USA, 30 November–30 December 2023; pp. 17085–17104. [Google Scholar]
- Upadhyay, U.; Karthik, S.; Mancini, M.; Akata, Z. Probvlm: Probabilistic adapter for frozen vison-language models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 1899–1910. [Google Scholar]
- Janiak, D.; Binkowski, J.; Bielak, P.; Kajdanowicz, T. Enhancing Out-of-Distribution Detection Through Stochastic Embeddings in Self-supervised Learning. In Proceedings of the International Conference on Computational Science, Málaga, Spain, 1–4 June 2024; Springer: Berlin/Heidelberg, Germany; pp. 337–351. [Google Scholar]
- Deng, Z.; Li, D.; Song, Y.Z.; Xiang, T. Robust Target Training for Multi-Source Domain Adaptation. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 21–24 November 2022. [Google Scholar]
- Fang, B.; Wu, W.; Liu, C.; Zhou, Y.; Song, Y.; Wang, W.; Shu, X.; Ji, X.; Wang, J. Uatvr: Uncertainty-adaptive text-video retrieval. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 13723–13733. [Google Scholar]
- Ji, Y.; Wang, J.; Gong, Y.; Zhang, L.; Zhu, Y.; Wang, H.; Zhang, J.; Sakai, T.; Yang, Y. Map: Multimodal uncertainty-aware vision-language pre-training model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 23262–23271. [Google Scholar]
- Wu, X.; Li, H.; Luo, Y.; Cheng, X.; Zhuang, X.; Cao, M.; Fu, K. Uncertainty-aware sign language video retrieval with probability distribution modeling. arXiv 2024, arXiv:2405.19689. [Google Scholar]
- Yu, T.; Li, D.; Yang, Y.; Hospedales, T.M.; Xiang, T. Robust person re-identification by modelling feature uncertainty. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 552–561. [Google Scholar]
- Zhang, Y.; Zheng, Z.; He, B.; Sun, L. Learning Posterior and Prior for Uncertainty Modeling in Person Re-Identification. arXiv 2020, arXiv:abs/2007.08785. [Google Scholar]
- Long, X.; Hu, R.; Xu, X. Variance Weight Distribution Network Based Noise Sample Learning for Robust Person Re-identification. In Proceedings of the Computer Graphics International (CGI), Shanghai, China, 28 August–2 September 2021; pp. 101–112. [Google Scholar]
- Li, Z.; Li, Z.; Shi, Y.; Ling, H.; Chen, J.; Wang, R.; Li, P. Uncertainty-Guided Person Search Model with Auxiliary Shallow Feature Exploration. In Proceedings of the ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Seoul, Republic of Korea, 14–19 April 2024; pp. 4795–4799. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Chen, K.; Yi, T.; Lv, Q. Fast and reliable probabilistic face embeddings based on constrained data uncertainty estimation. Image Vis. Comput. 2022, 121, 104429. [Google Scholar] [CrossRef]
- Schwaiger, A.; Sinhamahapatra, P.; Gansloser, J.; Roscher, K. Is uncertainty quantification in deep learning sufficient for out-of-distribution detection? In Proceedings of IJCAI-Workshop on Artificial Intelligence Safety (AISafety), Yokohama, Japan, 7–8 January 2021.
- Müller, S.; Wengefeld, T.; Trinh, T.Q.; Aganian, D.; Eisenbach, M.; Gross, H.M. A multi-modal person perception framework for socially interactive mobile service robots. Sensors 2020, 20, 722. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Mirzaei, H.; Hendrycks, D.; Li, Y.; Rohban, M.H.; Sabokrou, M. A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges. arXiv 2021, arXiv:2110.14051. [Google Scholar]
- Yang, J.; Zhou, K.; Li, Y.; Liu, Z. Generalized out-of-distribution detection: A survey. Int. J. Comput. Vis. 2024, 1–28. [Google Scholar] [CrossRef]
- Jin, X.; Lan, C.; Zeng, W.; Chen, Z. Uncertainty-aware multi-shot knowledge distillation for image-based object re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11165–11172. [Google Scholar]
- Geng, Y.; Han, Z.; Zhang, C.; Hu, Q. Uncertainty-aware multi-view representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 19–21 May 2021; Volume 35, pp. 7545–7553. [Google Scholar]
- Neculai, A.; Chen, Y.; Akata, Z. Probabilistic compositional embeddings for multimodal image retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 4547–4557. [Google Scholar]
- Kiureghian, A.D.; Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 2009, 31, 105–112. [Google Scholar] [CrossRef]
- Gal, Y.; Ghahramani, Z. Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of Tricks and a Strong Baseline for Deep Person Re-Identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1487–1495. [Google Scholar]
- Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable Person Re-identification: A Benchmark. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- He, L.; Liao, X.; Liu, W.; Liu, X.; Cheng, P.; Mei, T. FastReID: A Pytorch Toolbox for General Instance Re-identification. arXiv 2020, arXiv:abs/2006.02631. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ristani, E.; Tomasi, C. Features for multi-target multi-camera tracking and re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6036–6046. [Google Scholar]
- Zheng, L.; Yang, Y.; Hauptmann, A.G. Person re-identification: Past, present and future. arXiv 2016, arXiv:1610.02984. [Google Scholar]
Uncertainty | |||||||||
---|---|---|---|---|---|---|---|---|---|
Results | Training | Inference | |||||||
Approach | Reported In | mAP [%] | rank-1 [%] | M | D | V | M | D | V |
AWTL baseline [73] | [22] | 71.45 | 84.89 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
Bayesian Retrieval [22] | [22] | 72.19 | 85.87 | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
ResNet-50 baseline | [28] | 75.65 ± 0.21 | 90.48 ± 0.45 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
DistNet [51] | [28] | 74.61 ± 0.06 | 90.10 ± 0.29 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
PFE [21] | [28] | 76.49 ± 0.23 | 90.48 ± 0.51 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
DUL [31] | [28] | 77.12 ± 0.19 | 90.09 ± 0.17 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
MEIB [28] | [28] | 79.67 ± 0.15 | 92.14 ± 0.16 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
IDE baseline [74] | [52] | 78.4 | 89.7 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
LPP [52] | [52] | 80.5 | 91.2 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
BOT baseline [66] | 86.42 ± 0.09 | 94.53 ± 0.21 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
DistNet [51] | 83.95 ± 0.20 | 93.44 ± 0.28 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | |
PFE [21] | 86.42 ± 0.09 | 94.45 ± 0.20 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | |
UAL [25] | 86.77 ± 0.14 | 94.64 ± 0.21 | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | |
UBER (ours) | 87.21 ± 0.17 | 94.67 ± 0.18 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Distance Matrix | mAP [%] | rank-1 [%] | |
---|---|---|---|
BOT baseline [66] | 86.41 ± 0.09 | 94.42 ± 0.23 | |
(identical to UAL [25]) | |||
Uncertainty vector replaces feature vector | |||
Set | # of Images | |
---|---|---|
Training Data | (T) | |
Query | (Q) | |
Full Human | (D1) | |
Human Fragments | (D2) | |
Objects | (D3) | |
Background/Blur | (D4) |
Set | (a) | (b) | (c) | (d) | (e) | (f) | |
---|---|---|---|---|---|---|---|
Full Human | (D1) | 0.53 | 1.43 | 0.85 | 0.35 | 0.47 | 4.50 |
Human Fragments | (D2) | 1.47 | 2.29 | 2.74 | 1.10 | 2.61 | 1.07 |
Objects | (D3) | 1.41 | 4.55 | 3.93 | 1.34 | 3.07 | 2.80 |
Background/Blur | (D4) | 0.38 | 6.57 | 4.57 | 1.97 | 3.69 | 4.30 |
Set | (a) | (b) | (c) | (d) | (e) | (f) | |
---|---|---|---|---|---|---|---|
Full Human | (D1) | 1.08 | 2.92 | 1.50 | 1.49 | 1.13 | 2.60 |
Human Fragments | (D2) | 1.28 | 2.55 | 1.33 | 1.66 | 1.21 | 2.59 |
Objects | (D3) | 1.95 | 3.62 | 1.57 | 1.62 | 1.21 | 3.10 |
Background/Blur | (D4) | 2.54 | 5.68 | 1.81 | 0.88 | 1.19 | 4.98 |
Set | # of Images | Remaining | |
---|---|---|---|
Query | 3119 | 92.6% | |
Full Human | 199 | 71.6% | |
Human Fragments | 304 | 17.6% | |
Objects | 31 | 5.5% | |
Background/Blur | 2 | 0.9% |
Set | # of Images | Remaining | |
---|---|---|---|
Query | 3110 | 92.3% | |
Full Human | 204 | 73.4% | |
Human Fragments | 825 | 47.7% | |
Objects | 110 | 19.4% | |
Background/Blur | 30 | 13.4% |
Set | # of Images | Remaining | |
---|---|---|---|
Query | 38 | 1.1% | |
Full Human | 26 | 9.4% | |
Human Fragments | 685 | 39.6% | |
Objects | 401 | 70.7% | |
Background/Blur | 188 | 83.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisenbach, M.; Gebhardt, A.; Aganian, D.; Gross, H.-M. Improving Re-Identification by Estimating and Utilizing Diverse Uncertainty Types for Embeddings. Algorithms 2024, 17, 430. https://doi.org/10.3390/a17100430
Eisenbach M, Gebhardt A, Aganian D, Gross H-M. Improving Re-Identification by Estimating and Utilizing Diverse Uncertainty Types for Embeddings. Algorithms. 2024; 17(10):430. https://doi.org/10.3390/a17100430
Chicago/Turabian StyleEisenbach, Markus, Andreas Gebhardt, Dustin Aganian, and Horst-Michael Gross. 2024. "Improving Re-Identification by Estimating and Utilizing Diverse Uncertainty Types for Embeddings" Algorithms 17, no. 10: 430. https://doi.org/10.3390/a17100430
APA StyleEisenbach, M., Gebhardt, A., Aganian, D., & Gross, H. -M. (2024). Improving Re-Identification by Estimating and Utilizing Diverse Uncertainty Types for Embeddings. Algorithms, 17(10), 430. https://doi.org/10.3390/a17100430