Open Competency Optimization: A Human-Inspired Optimizer for the Dynamic Vehicle-Routing Problem
Abstract
:1. Introduction
- We developed a novel metaheuristic inspired by the behavior of students in competency-based learning.
- Recognizing that metaheuristics tend to lose diversity in dynamic environments, we introduced a mechanism for injecting new solutions into the population. Consequently, the size of the solution population is dynamic rather than static.
- We applied our new metaheuristic to two dynamic optimization problems; the first is the Generalized Dynamic Benchmark Generator, and the second is the dynamic vehicle-routing problem.
- We tested the diversity of our metaheuristic using a novel measurement technique.
2. Dynamic VRP
- Constraint 4 requires that the loading capacity of each vehicle is respected;
- Constraint 5 requires a unique passage for each customer;
- Constraint 6 allows one to check the construction of M tours.
Researchers | Year | Title |
---|---|---|
Mavrovouniotis et al. [28] | 2012 | Ant colony optimization with immigrants schemes for the dynamic vehicle-routing problem |
Mavrovouniotis et al. [29] | 2012 | Ant colony optimization with memory-based immigrants for the dynamic vehicle-routing problem |
Xiang et al. [35] | 2021 | A pairwise proximity learning-based ant colony algorithm for dynamic vehicle-routing problem |
Housroum et al. [30] | 2006 | A hybrid GA approach for solving the dynamic vehicle-routing problem with time windows |
Jianxia et al. [33] | 2023 | Elastic Strategy-Based Adaptive Genetic Algorithm for Solving Dynamic Vehicle-Routing Problem With Time Windows |
Garrido et al. [15] | 2010 | DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic |
Khouadjia et al. [16] | 2010 | Multi-swarm optimization for dynamic combinatorial problems: A case study on dynamic vehicle-routing problem |
Achamrah et al. [17] | 2021 | Solving inventory routing with transshipment and substitution under dynamic and stochastic demands using genetic algorithm and deep reinforcement learning |
3. Open Competency Optimization
- Each learner can build their learning path according to their capacities (self-learning);
- Each learner can react to their closest group from either positions or capacities (neighbor learners). It should be noted that this group cannot exceed five members [37];
- Learners can respond by discussing or adopting some smart proposals (better capabilities) from other learners (leadership interactions).
Algorithm 1 General steps of the OCO Algorithm |
|
3.1. Self-Learning
- (, , …, ):
Algorithm 2 Self-learning conditions |
|
3.2. Neighbor Learner Groups
Algorithm 3 Strategy for the learner group in a close neighborhood |
|
Algorithm 4 Strategy of the chosen randomly learner group |
|
3.3. Leadership Interaction
- Every learner adopts or reacts to the idea of the best. Either the best solution is kept or other spaces for the best solution are exploited.
- The competency-based approach is not captured by the concept of the middle class. In traditional education, learners are guided by average learners. The best or the weakest are beyond the reach of such teaching. All learning of this approach promotes the means and neglects others. To avoid this situation, each learner interacts with the average according to their capabilities because they develop their own competencies. This reinforces the exploratory nature of the algorithm and, thus, helps improve the diversity of ideas (solutions to the problem).
3.4. Optimization Analysis
3.4.1. Exploration
3.4.2. Exploitation
3.4.3. Computational Complexity
4. Experimental Studies
- Small steps
- Large steps
- Random
- Chaotic
- Recurrent
- Recurrent with noise
- Dimensional
- Small steps
- Large steps
4.1. OCO’s Mechanism of Diversity
4.2. Comparison with Other Metaheuristics
4.3. Dynamic Vehicle-Routing Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Talbi, E. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 2, pp. 268–308. [Google Scholar]
- Roegiers, X. L’école et L’évaluation: Des Situations Pour Évaluer les Compétences des Élèves; De Boeck: Brussels, Belgium, 2004. [Google Scholar]
- Suganthan, P.N. Benchmarks for Evaluation of Evolutionary Algorithms. 2016. Available online: https://www3.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm (accessed on 10 July 2016).
- Wang, H.; Yang, S.; Ip, W.; Wang, D. Adaptive primal–dual genetic algorithms in dynamic environments. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 39, 1348–1361. [Google Scholar] [CrossRef] [PubMed]
- Kordestani, J.K.; Ranginkaman, A.E.; Meybodi, M.R.; Novoa-Hernández, P. A novel framework for improving multi-population algorithms for dynamic optimization problems: A scheduling approach. Swarm Evol. Comput. 2019, 44, 788–805. [Google Scholar] [CrossRef]
- Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A survey of evolutionary continuous dynamic optimization over two decades—Part B. IEEE Trans. Evol. Comput. 2021, 25, 630–650. [Google Scholar] [CrossRef]
- Jebari, K.; Bouroumi, A.; Ettouhami, A. Parameters control in GAs for dynamic optimization. Int. J. Comput. Intell. Syst. 2013, 6, 47–63. [Google Scholar] [CrossRef]
- Jebari, K.; Nasry, B.; Bouroumi, A.; Ettouhami, A. Evolutionary fuzzy rules for dynamic optimisation. Int. J. Innov. Comput. Appl. 2017, 8, 81–101. [Google Scholar] [CrossRef]
- Li, C.; Yang, S. A generalized approach to construct benchmark problems for dynamic optimization. In Proceedings of the Simulated Evolution and Learning: 7th International Conference, SEAL 2008, Melbourne, Australia, 7–10 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 391–400. [Google Scholar]
- Toth, P.; Vigo, D. The Vehicle Routing Problem; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- İlhan, İ. An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol. Comput. 2021, 64, 100911. [Google Scholar] [CrossRef]
- Cordeau, J.F.; Laporte, G. A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B Methodol. 2003, 37, 579–594. [Google Scholar] [CrossRef]
- Wang, J.; Jagannathan, A.K.R.; Zuo, X.; Murray, C.C. Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Comput. Ind. Eng. 2017, 112, 84–98. [Google Scholar] [CrossRef]
- Abdulkader, M.M.; Gajpal, Y.; ElMekkawy, T.Y. Hybridized ant colony algorithm for the multi compartment vehicle routing problem. Appl. Soft Comput. 2015, 37, 196–203. [Google Scholar] [CrossRef]
- Wang, X.; Choi, T.M.; Liu, H.; Yue, X. Novel ant colony optimization methods for simplifying solution construction in vehicle routing problems. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3132–3141. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Z.; Geng, N. A hybrid genetic algorithm for the multi-depot open vehicle routing problem. OR Spectr. 2014, 36, 401–421. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Abd Ghani, M.K.; Hamed, R.I.; Mostafa, S.A.; Ahmad, M.S.; Ibrahim, D.A. Solving vehicle routing problem by using improved genetic algorithm for optimal solution. J. Comput. Sci. 2017, 21, 255–262. [Google Scholar] [CrossRef]
- Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A.A. Rich vehicle routing problem: Survey. ACM Comput. Surv. (CSUR) 2014, 47, 1–28. [Google Scholar] [CrossRef]
- Montoya-Torres, J.R.; Franco, J.L.; Isaza, S.N.; Jiménez, H.F.; Herazo-Padilla, N. A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 2015, 79, 115–129. [Google Scholar] [CrossRef]
- Ritzinger, U.; Puchinger, J.; Hartl, R.F. A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 2016, 54, 215–231. [Google Scholar] [CrossRef]
- Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 2020, 140, 106242. [Google Scholar] [CrossRef]
- Escobar, J.W.; Linfati, R.; Toth, P.; Baldoquin, M.G. A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J. Heuristics 2014, 20, 483–509. [Google Scholar] [CrossRef]
- Gendreau, M.; Ghiani, G.; Guerriero, E. Time-dependent routing problems: A review. Comput. Oper. Res. 2015, 64, 189–197. [Google Scholar] [CrossRef]
- Ghiani, G.; Guerriero, F.; Laporte, G.; Musmanno, R. Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. Eur. J. Oper. Res. 2003, 151, 1–11. [Google Scholar] [CrossRef]
- Okulewicz, M.; Mańdziuk, J. A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space. Swarm Evol. Comput. 2019, 48, 44–61. [Google Scholar] [CrossRef]
- Maryam Abdirad, K.K.; Gupta, D. A two-stage metaheuristic algorithm for the dynamic vehicle routing problem in Industry 4.0 approach. J. Manag. Anal. 2021, 8, 69–83. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Dynamic vehicle routing: A memetic ant colony optimization approach. In Automated Scheduling and Planning: From Theory to Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 283–301. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Ant colony optimization with immigrants schemes for the dynamic vehicle routing problem. In Proceedings of the Applications of Evolutionary Computation: EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, Málaga, Spain, 11–13 April 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 519–528. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Housroum, H.; Hsu, T.; Dupas, R.; Goncalves, G. A hybrid GA approach for solving the dynamic vehicle routing problem with time windows. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 787–792. [Google Scholar]
- Garrido, P.; Riff, M.C. DVRP: A hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 2010, 16, 795–834. [Google Scholar] [CrossRef]
- Khouadjia, M.R.; Alba, E.; Jourdan, L.; Talbi, E.G. Multi-swarm optimization for dynamic combinatorial problems: A case study on dynamic vehicle routing problem. In Proceedings of the International Conference on Swarm Intelligence, Brussels, Belgium, 8–10 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 227–238. [Google Scholar]
- Li, J.; Liu, R.; Wang, R. Elastic Strategy-Based Adaptive Genetic Algorithm for Solving Dynamic Vehicle Routing Problem with Time Windows. IEEE Trans. Intell. Transp. Syst. 2023, 24, 13930–13947. [Google Scholar] [CrossRef]
- Achamrah, F.E.; Riane, F.; Limbourg, S. Solving inventory routing with transshipment and substitution under dynamic and stochastic demands using genetic algorithm and deep reinforcement learning. Int. J. Prod. Res. 2022, 60, 6187–6204. [Google Scholar] [CrossRef]
- Xiang, X.; Tian, Y.; Zhang, X.; Xiao, J.; Jin, Y. A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5275–5286. [Google Scholar] [CrossRef]
- Roegiers, X. From Knowledge to Competency; Peter Lang Group AG: Brussels, Belgium, 2018. [Google Scholar]
- Lewin, K. Frontiers in group dynamics: Concept, method and reality in social science; social equilibria and social change. Hum. Relat. 1947, 1, 5–41. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- Deb, K. Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multiobjective problems. Complex Syst. 1995, 9, 431–454. [Google Scholar]
- Yang, S. Genetic algorithms with elitism-based immigrants for changing optimization problems. In Proceedings of the Workshops on Applications of Evolutionary Computation, Valencia, Spain, 11–13 April 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 627–636. [Google Scholar]
- Cobb, H.G. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments; Naval Research Laboratory, Navy Center for Applied Research in Artificial: Washington, DC, USA, 1990. [Google Scholar]
- Yang, S.; Li, C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput. 2010, 14, 959–974. [Google Scholar] [CrossRef]
- Korosec, P.; Silc, J. The differential ant-stigmergy algorithm applied to dynamic optimization problems. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 407–414. [Google Scholar]
- Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 2005, 9, 303–317. [Google Scholar] [CrossRef]
- Boschetti, M.A.; Maniezzo, V.; Strappaveccia, F. Route relaxations on GPU for vehicle routing problems. Eur. J. Oper. Res. 2017, 258, 456–466. [Google Scholar] [CrossRef]
- Fisher, M.L. Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 1994, 42, 626–642. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Yang, S.; Yao, X. A benchmark generator for dynamic permutation-encoded problems. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Taormina, Italy, 1–5 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 508–517. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Ant algorithms with immigrants schemes for the dynamic vehicle routing problem. Inf. Sci. 2015, 294, 456–477. [Google Scholar] [CrossRef]
Researchers | Year | Title |
---|---|---|
Cordeau et al. [12] | 2003 | A tabu search heuristic for the static multi-vehicle dial-a-ride problem |
Escobar et al. [22] | 2014 | A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem |
Lhan et al. [11] | 2021 | An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem |
Abdulkader et al. [14] | 2015 | Hybridized ant colony algorithm for the multi compartment vehicle routing problem |
Wang et al. [15] | 2016 | Novel ant colony optimization methods for simplifying solution construction in vehicle routing problems |
Liu et al. [16] | 2014 | A hybrid genetic algorithm for the multi-depot open vehicle routing problem |
Mazin et al. [17] | 2017 | Solving vehicle routing problem by using improved genetic algorithm for optimal solution |
Technique Used | Peaks (m) | Errors | Times | ||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | |||
SGA | 10 | Avg best | |||||||
Avg worst | 30.53 | 42.38 | 64.16 | 69.74 | 32.15 | 54.84 | 37.05 | ||
Avg mean | 25.11 | 18.01 | 20.54 | 31.41 | 15.23 | 31.46 | 15.73 | ||
STD | 10.45 | 14.19 | 12.23 | 23.39 | 7.69 | 20.81 | 8.05 | ||
50 | Avg best | ||||||||
Avg worst | 41.35 | 58.53 | 61.21 | 56.84 | 44.62 | 54.61 | 23.62 | ||
Avg mean | 27.61 | 20.46 | 19.09 | 27.18 | 14.78 | 318.91 | 13.78 | ||
STD | 9.28 | 10.38 | 13.41 | 21.08 | 4.38 | 18.38 | 4.46 | ||
HMGA | 10 | Avg best | 0 | 0 | 0 | 0 | |||
Avg worst | 1.24 | 21.63 | 40.62 | 5.78 | 19.39 | 4.98 | 21.03 | ||
Avg mean | 5.04 | 12.89 | 26.35 | 8.16 | 11.79 | 8.76 | 9.18 | ||
STD | 1.12 | 4.23 | 17.12 | 2.75 | 4.66 | 2.15 | 4.02 | ||
50 | Avg best | ||||||||
Avg worst | 3.12 | 5.13 | 9.31 | 9.17 | 10.24 | 5.76 | 4.83 | ||
Avg mean | 12.92 | 15.27 | 17.38 | 4.07 | 7.43 | 8.97 | 15.49 | ||
STD | 2.46 | 5.42 | 9.57 | 3.28 | 6.84 | 3.37 | 4.03 | ||
RIGA | 10 | Avg best | 0 | ||||||
Avg worst | 1.35 | 3.75 | 8.51 | 5.16 | 5.91 | 10.18 | 17.38 | ||
Avg mean | 2.02 | 12.81 | 17.95 | 8.26 | 9.29 | 61.46 | 5.89 | ||
STD | 1.42 | 6.28 | 12.02 | 1.75 | 4.66 | 2.73 | 4.03 | ||
50 | Avg best | 0 | |||||||
Avg worst | 2.32 | 14.03 | 7.21 | 13.27 | 22.13 | 23.15 | 30.98 | ||
Avg mean | 8.62 | 9.27 | 16.37 | 8.69 | 6.64 | 9.47 | 6.49 | ||
STD | 1.98 | 4.07 | 10.41 | 2.84 | 2.84 | 3.94 | 2.71 | ||
CPSO | 10 | Avg best | |||||||
Avg worst | 1.244 | 27.12 | 28.15 | 3.239 | 21.72 | 26.55 | 35.52 | ||
Avg mean | 0.03514 | 2.718 | 4.131 | 0.09444 | 1.869 | 1.056 | 4.54 | ||
STD | 0.4262 | 6.523 | 8.994 | 0.7855 | 4.491 | 4.805 | 9.119 | ||
50 | Avg best | ||||||||
Avg worst | 4.922 | 22.08 | 25.65 | 1.974 | 9.606 | 22.08 | 27.9 | ||
Avg mean | 0.2624 | 3.279 | 6.319 | 0.125 | 0.8481 | 1.482 | 6.646 | ||
STD | 0.9362 | 5.303 | 7.442 | 0.3859 | 1.779 | 4.393 | 7.94 | ||
DASA | 10 | Avg best | |||||||
Avg worst | 5.51 | ||||||||
Avg mean | 4.18 | 6.37 | 2.54 | 2.34 | 4.84 | ||||
STD | 1.25 | 9.07 | 1.95 | 4.80 | 8.66 | 8.96 | |||
50 | Avg best | ||||||||
Avg worst | 7.67 | 31 | 5.58 | 11.6 | 35.1 | 32.2 | |||
Avg mean | 4.86 | 8.42 | 1.18 | 2.07 | 7.84 | ||||
STD | 1.39 | 7.00 | 9.56 | 1.09 | 2.18 | 5.97 | 9.05 | ||
OCO | 10 | Avg best | 0 | 0 | 0 | 0 | 0 | ||
Avg worst | 10.01 | 10.51 | 23.12 | 13.10 | 11.45 | 21.15 | 10.15 | ||
Avg mean | 1.20 | 2.85 | 4.45 | 2.64 | 3.15 | 1.85 | 1.50 | ||
STD | 0.12 | 1.25 | 3.25 | 0.85 | 1.25 | 0.15 | 0.05 | ||
50 | Avg best | 0 | 0 | 0 | 0 | 0 | |||
Avg worst | 19.20 | 30.45 | 44.45 | 40.20 | 25.85 | 13.74 | 51.55 | ||
Avg mean | 2.50 | 3.25 | 6.12 | 3.42 | 1.26 | 1.12 | 2.04 | ||
STD | 0.54 | 2.05 | 5.45 | 0.45 | 1.05 | 0.80 | 0.46 |
Technique Used | Errors | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
SGA | Avg best | |||||||
Avg worst | 98.65 | 458.12 | 489.45 | 123.15 | 398.54 | 123.15 | 178.54 | |
Avg mean | 34.17 | 83.91 | 128.52 | 32.54 | 94.28 | 123.15 | 78.54 | |
STD | 10.48 | 13.02 | 15.12 | 11.02 | 12.46 | 21.78 | 44.38 | |
HMGA | Avg best | |||||||
Avg worst | 7.43 | 11.05 | 21.72 | 7.86 | 9.29 | 8.29 | 32.52 | |
Avg mean | 6.76 | 10.31 | 19.62 | 8.27 | 12.76 | 17.29 | 25.83 | |
STD | 3.16 | 8.09 | 11.25 | 2.63 | 8.61 | 7.37 | 12.83 | |
RIGA | Avg best | |||||||
Avg worst | 6.13 | 9.15 | 18.37 | 6.81 | 17.27 | 9.13 | 20.43 | |
Avg mean | 4.36 | 11.31 | 18.92 | 8.37 | 10.21 | 15.08 | 11.13 | |
STD | 2.62 | 7.07 | 10.35 | 2.23 | 6.51 | 6.45 | 10.53 | |
CEPSO | Avg best | |||||||
Avg worst | 19.26 | 144.1 | 158.3 | 10.18 | 320.7 | 26.08 | 30.44 | |
Avg mean | 1.247 | 10.1 | 10.27 | 0.5664 | 25.14 | 1.987 | 3.651 | |
STD | 4.178 | 35.06 | 33.45 | 2.137 | 64.25 | 5.217 | 6.927 | |
DASA | Avg best | |||||||
Avg worst | 36.70 | |||||||
Avg mean | 3.30 | 1.45 | 2.11 | 3.87 | ||||
STD | 8.78 | 3.83 | 5.29 | 8.12 | ||||
OCO | Avg best | 0 | ||||||
Avg worst | 20.14 | 23.54 | 20.26 | 30.08 | 100.15 | 120.01 | 101.54 | |
STD | 40.74 | 89.15 | 36.04 | 60.02 | 80.01 | 94.45 | 100.01 |
Technique Used | Errors | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
SGA | Avg best | |||||||
Avg worst | 792.45 | 958.12 | 925.45 | 1123.15 | 1043.54 | 523.85 | 878.94 | |
Avg mean | 141.85 | 582.51 | 554.72 | 497.23 | 597.63 | 229.93 | 292.64 | |
STD | 83.14 | 140.13 | 231.12 | 98 | 96.59 | 93.15 | 77.42 | |
HMGA | Avg best | |||||||
Avg worst | 91.84 | 102 | 197.14 | 123.45 | 198.15 | 183.80 | 178.24 | |
Avg mean | 141.18 | 245.89 | 254.87 | 121 | 114.17 | 115.73 | 129.04 | |
STD | 81.47 | 101.12 | 76.15 | 119.85 | 94.57 | 93.79 | 79.42 | |
RIGA | Avg best | |||||||
Avg worst | 73.74 | 96 | 143.14 | 98.85 | 106.45 | 123.75 | 108.02 | |
Avg mean | 23.28 | 26.91 | 134.77 | 68.09 | 98.74 | 101.13 | 97.08 | |
STD | 41.46 | 89.82 | 56.95 | 98.87 | 64.07 | 13.69 | 59.72 | |
CPSO | Avg best | 0.003947 | 126.2 | 42.89 | 228.5 | 4.356 | 0.9334 | |
Avg worst | 711.2 | 1008 | 966.1 | 1204 | 974.2 | 1424 | 1011 | |
Avg mean | 137.5 | 855.1 | 765.9 | 430.6 | 859.7 | 753 | 653.7 | |
STD | 221.6 | 161 | 235.8 | 432.2 | 121.5 | 361.7 | 334 | |
DASA | Avg best | 1.38 | 3.08 | 0.106 | ||||
Avg worst | ||||||||
Avg mean | ||||||||
STD | ||||||||
OCO | Avg best | |||||||
Avg worst | 106.05 | 215.68 | 220.06 | 125.67 | 218.83 | 143.93 | 200.87 | |
Avg mean | 261.74 | 221.57 | 315.32 | 332.03 | 215.63 | 240.76 | 290.87 | |
STD | 95.14 | 100.50 | 130.12 | 210.45 | 145.60 | 120.15 | 175.45 |
Technique Used | Errors | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
SGA | Avg best | |||||||
Avg worst | 172.5 | 248 | 431.02 | 351.62 | 558.43 | 261.27 | 454.21 | |
Avg mean | 141.41 | 125.15 | 214.54 | 297.23 | 184.79 | 163.64 | 102.34 | |
STD | 103.14 | 90.05 | 112.02 | 118 | 156.49 | 103.74 | 52.48 | |
HMGA | Avg best | |||||||
Avg worst | 151.84 | 180 | 287.13 | 121.2 | 298.15 | 191.29 | 164.34 | |
Avg mean | 81.41 | 125.15 | 114.54 | 97.23 | 84.79 | 121.74 | 152.56 | |
STD | 14.18 | 35.85 | 25.89 | 14.88 | 56.48 | 63.64 | 102.34 | |
RIGA | Avg best | |||||||
Avg worst | 189.54 | 195.76 | 125.18 | 121.2 | 198.12 | 81.39 | 174.24 | |
Avg mean | 21.67 | 108.65 | 119.81 | 97.23 | 84.29 | 128.24 | 107.04 | |
STD | 10.68 | 48.25 | 35.89 | 11.86 | 77.98 | 57.44 | 92.96 | |
CPSO | Avg best | |||||||
Avg worst | 29.38 | 459.8 | 389.4 | 14.62 | 481 | 63.06 | 93.32 | |
Avg mean | 2.677 | 37.15 | 36.67 | 0.7926 | 67.17 | 4.881 | 7.792 | |
STD | 7.055 | 99.43 | 97.18 | 2.775 | 130.3 | 15.39 | 19.21 | |
DASA | Avg best | |||||||
Avg worst | ||||||||
Avg mean | 5.60 | 1.85 | 2.98 | 27.4 | ||||
STD | 4.22 | 7.59 | 90 | |||||
OCO | Avg best | |||||||
Avg worst | 15.15 | 40.80 | 54.15 | 90.05 | 25.20 | 40.05 | 85.26 | |
Avg mean | 10.15 | 25.60 | 21.10 | 15.60 | 40.65 | 15.23 | 45.58 | |
STD | 5.37 | 15.41 | 1.45 | 10.12 | 22.21 | 11.15 | 6.72 |
Technique Used | Errors | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
SGA | Avg best | |||||||
Avg worst | 181.53 | 197.82 | 112.15 | 120.65 | 189.84 | 112.15 | 201.24 | |
Avg mean | 68.35 | 71.57 | 128.62 | 92.84 | 104.29 | 91.23 | 81.34 | |
STD | 43.67 | 55.75 | 61.02 | 50.32 | 78.32 | 64.25 | 41.74 | |
HMGA | Avg best | |||||||
Avg worst | 81.64 | 97.89 | 101.05 | 138.75 | 169.84 | 102.75 | 173.14 | |
Avg mean | 88.25 | 91.58 | 68.52 | 102.14 | 93.39 | 87.13 | 74.54 | |
STD | 33.62 | 45.15 | 21.72 | 37.42 | 38.39 | 39.85 | 14.74 | |
RIGA | Avg best | |||||||
Avg worst | 71.64 | 87.82 | 71.25 | 83.75 | 69.84 | 82.95 | 73.14 | |
Avg mean | 78.25 | 81.58 | 98.52 | 72.14 | 74.59 | 47.53 | 34.54 | |
STD | 33.67 | 45.85 | 51.72 | 30.42 | 38.39 | 19.85 | 19.74 | |
CPSO | Avg best | |||||||
Avg worst | 25.41 | 31.76 | 27.77 | 26.66 | 63.2 | 42.54 | 103.2 | |
Avg mean | 1.855 | 2.879 | 3.403 | 1.095 | 7.986 | 4.053 | 6.527 | |
STD | 5.181 | 6.787 | 6.448 | 4.865 | 13.81 | 8.371 | 22.8 | |
DASA | Avg best | |||||||
Avg worst | 8.10 | 8.75 | 18.7 | |||||
Avg mean | 2.30 | |||||||
STD | 3.43 | 4.05 | 3.31 | 1.61 | 6.36 | 1.73 | 3.76 | |
OCO | Avg best | 0 | 0 | 0 | 0 | 0 | ||
Avg worst | 74.13 | 91.78 | 104.77 | 106.51 | 92.81 | 114.51 | 125.35 | |
Avg mean | 51.08 | 80.26 | 90.29 | 70.62 | 64.47 | 71.92 | 93.12 | |
STD | 12.12 | 21.37 | 41.08 | 49.43 | 51.15 | 31.28 | 56.89 |
Technique Used | Errors | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
SGA | Avg best | |||||||
Avg worst | 247.6 | 558.2 | 683.6 | 723 | 308.5 | 530.1 | 698.3 | |
Avg mean | 63.88 | 208.3 | 98.53 | 63.74 | 160.28 | 153.45 | 168.34 | |
STD | 39.55 | 129.61 | 81.18 | 48.42 | 106.49 | 187.95 | 134.12 | |
HMGA | Avg best | |||||||
Avg worst | 87.79 | 252.5 | 304.8 | 198.6 | 475.8 | 265.7 | 424.5 | |
Avg mean | 51.12 | 98.71 | 80.27 | 62.83 | 113.56 | 96.56 | 95.63 | |
STD | 10.97 | 63.77 | 33.88 | 24.23 | 60.65 | 46.76 | 75.91 | |
RIGA | Avg best | |||||||
Avg worst | 77.81 | 192.6 | 214.9 | 208.6 | 365.7 | 275.2 | 364.7 | |
Avg mean | 48.82 | 88.61 | 109.67 | 52.89 | 153.76 | 169.96 | 108.73 | |
STD | 10.37 | 53.67 | 81.28 | 20.03 | 130.85 | 52.06 | 71.23 | |
CPSO | Avg best | |||||||
Avg worst | 37.79 | 258.5 | 504.8 | 131.8 | 628.8 | 265.7 | 424.5 | |
Avg mean | 6.725 | 21.57 | 27.13 | 9.27 | 71.57 | 23.67 | 32.58 | |
STD | 9.974 | 63.51 | 83.98 | 24.23 | 160.3 | 51.55 | 76.9 | |
DASA | Avg best | |||||||
Avg worst | ||||||||
Avg mean | 8.87 | 37 | 26.7 | 9.74 | 37.9 | 13.3 | 11.7 | |
STD | 13.3 | 98.4 | 22 | 57.4 | 36.7 | |||
OCO | Avg best | |||||||
Avg worst | 18.67 | 20.15 | 24.62 | 85.36 | 50.69 | 60.93 | 43.17 | |
Avg mean | 7.58 | 30.84 | 49.72 | 67.09 | 75.24 | 28.56 | 29.13 | |
STD | 5.09 | 17.65 | 21.78 | 15.79 | 32.93 | 22.71 | 23.86 |
F1 (10) | F1 (50) | F2 | F3 | F4 | F5 | F6 | ||
---|---|---|---|---|---|---|---|---|
SGA | ||||||||
T1 | 0.852 | 0.826 | 0.316 | 0.099 | 0.325 | 0.299 | 0.283 | |
T2 | 0.799 | 0.777 | 0.228 | 0.018 | 0.185 | 0.353 | 0.265 | |
T3 | 0.768 | 0.730 | 0.291 | 0.033 | 0.259 | 0.349 | 0.289 | |
T4 | 0.647 | 0.660 | 0.242 | 0.050 | 0.249 | 0.276 | 0.383 | |
T5 | 0.851 | 0.874 | 0.315 | 0.040 | 0.239 | 0.365 | 0.392 | |
T6 | 0.543 | 0.504 | 0.221 | 0.043 | 0.213 | 0.271 | 0.380 | |
T7 | 0.737 | 0.710 | 0.334 | 0.074 | 0.287 | 0.334 | 0.294 | |
HMGA | ||||||||
T1 | 0.872 | 0.844 | 0.371 | 0.263 | 0.336 | 0.384 | 0.333 | |
T2 | 0.808 | 0.794 | 0.253 | 0.111 | 0.214 | 0.366 | 0.292 | |
T3 | 0.746 | 0.730 | 0.318 | 0.261 | 0.257 | 0.405 | 0.336 | |
T4 | 0.673 | 0.709 | 0.327 | 0.151 | 0.292 | 0.309 | 0.260 | |
T5 | 0.831 | 0.874 | 0.299 | 0.272 | 0.388 | 0.508 | 0.322 | |
T6 | 0.586 | 0.525 | 0.295 | 0.139 | 0.298 | 0.333 | 0.248 | |
T7 | 0.763 | 0.718 | 0.396 | 0.156 | 0.337 | 0.409 | 0.376 | |
RIGA | ||||||||
T1 | 0.889 | 0.788 | 0.769 | 0.442 | 0.388 | 0.469 | 0.542 | |
T1 | 0.848 | 0.678 | 0.658 | 0.385 | 0.378 | 0.558 | 0.345 | |
T1 | 0.746 | 0.748 | 0.512 | 0.389 | 0.448 | 0.472 | 0.489 | |
T1 | 0.723 | 0.858 | 0.351 | 0.386 | 0.458 | 0.461 | 0.389 | |
T1 | 0.758 | 0.523 | 0.256 | 0.364 | 0.423 | 0.376 | 0.441 | |
T1 | 0.423 | 0.458 | 0.431 | 0.399 | 0.458 | 0.461 | 0.487 | |
T1 | 0.658 | 0.523 | 0.456 | 0.483 | 0.463 | 0.456 | 0.381 | |
CPSO | ||||||||
T1 | 0.958 | 0.978 | 0.858 | 0.295 | 0.478 | 0.658 | 0.645 | |
T2 | 0.887 | 0.845 | 0.745 | 0.561 | 0.545 | 0.645 | 0.561 | |
T3 | 0.845 | 0.874 | 0.781 | 0.421 | 0.374 | 0.678 | 0.521 | |
T4 | 0.795 | 0.712 | 0.645 | 0.328 | 0.512 | 0.445 | 0.378 | |
T5 | 0.791 | 0.689 | 0.432 | 0.485 | 0.389 | 0.532 | 0.485 | |
T6 | 0.623 | 0.658 | 0.651 | 0.589 | 0.558 | 0.451 | 0.489 | |
T7 | 0.458 | 0.523 | 0.256 | 0.541 | 0.323 | 0.456 | 0.541 | |
DASA | ||||||||
T1 | 0.942 | 0.941 | 0.728 | 0.463 | 0.688 | 0.665 | 0.789 | |
T2 | 0.892 | 0.888 | 0.575 | 0.390 | 0.470 | 0.612 | 0.789 | |
T3 | 0.869 | 0.838 | 0.580 | 0.526 | 0.490 | 0.603 | 0.432 | |
T4 | 0.977 | 0.975 | 0.900 | 0.380 | 0.883 | 0.874 | 0.631 | |
T5 | 0.889 | 0.918 | 0.569 | 0.472 | 0.463 | 0.609 | 0.655 | |
T6 | 0.882 | 0.873 | 0.644 | 0.435 | 0.569 | 0.539 | 0.459 | |
T7 | 0.857 | 0.830 | 0.549 | 0.559 | 0.572 | 0.589 | 0.414 | |
OCO | ||||||||
T1 | 0.858 | 0.858 | 0.694 | 0.715 | 0.752 | 0.848 | 0.625 | |
T2 | 0.687 | 0.645 | 0.654 | 0.645 | 0.675 | 0.898 | 0.789 | |
T3 | 0.635 | 0.802 | 0.885 | 0.658 | 0.597 | 0.789 | 0.614 | |
T4 | 0.795 | 0.779 | 0.714 | 0.608 | 0.647 | 0.895 | 0.585 | |
T5 | 0.791 | 0.783 | 0.621 | 0.515 | 0.546 | 0.538 | 0.574 | |
T6 | 0.712 | 0.668 | 0.578 | 0.749 | 0.545 | 0.589 | 0.658 | |
T7 | 0.659 | 0.654 | 0.654 | 0.645 | 0.658 | 0.789 | 0.658 | |
Performance | SGA | HMGA | RIGA | CPSO | DASA | OCO | ||
34.27 | 39.11 | 49.55 | 57.57 | 65.21 | 68.75 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 802.80 | 810.40 | 830.20 | 835.10 |
ACO | 800.70 | 950.55 | 995.10 | 1010.50 |
HMGA | 900.60 | 1000.20 | 1110.00 | 1020.20 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 810.10 | 802.00 | 804.80 | 805.30 |
ACO | 807.90 | 808.10 | 810.10 | 820.60 |
HMGA | 850.60 | 850.80 | 855.00 | 860.20 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 265.40 | 270.50 | 287.35 | 290.15 |
ACO | 300.10 | 320.80 | 360.80 | 385.50 |
HMGA | 350.60 | 400.00 | 410.00 | 420.30 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 270.90 | 272.60 | 275.20 | 276.20 |
ACO | 290.70 | 295.10 | 300.70 | 308.90 |
HMGA | 300.80 | 310.20 | 315.50 | 320.10 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 1330.50 | 1355.10 | 1370.60 | 1380.00 |
ACO | 1355.50 | 1354.30 | 1364.60 | 1385.40 |
HMGA | 1300.20 | 1430.20 | 1440.10 | 1450.20 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 1270.50 | 1285.40 | 1290.60 | 1298.00 |
ACO | 1290.10 | 1305.20 | 1310.30 | 1320.60 |
HMGA | 1460.60 | 1470.20 | 1475.00 | 1500.10 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 800.80 | 810.70 | 820.70 | 835.30 |
ACO | 831.60 | 840.70 | 850.00 | 860.60 |
HMGA | 800.40 | 820.20 | 950.00 | 960.10 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 800.80 | 803.60 | 804.30 | 815.70 |
ACO | 808.05 | 810.790 | 815.70 | 820.80 |
HMGA | 880.10 | 890.80 | 900.00 | 920.30 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 280.10 | 288.20 | 289.40 | 290.70 |
ACO | 270.50 | 275.00 | 296.50 | 298.40 |
HMGA | 320.60 | 340.20 | 340.00 | 360.80 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 270.80 | 271.30 | 274.80 | 278.50 |
ACO | 280.40 | 281.70 | 282.80 | 282.80 |
HMGA | 300.60 | 310.10 | 350.00 | 350.80 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 1320.30 | 1330.40 | 1340.20 | 1351.50 |
ACO | 1310.80 | 1320.30 | 1339.10 | 1365.40 |
HMGA | 1350.60 | 1400.20 | 1410.20 | 1440.30 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 1273.60 | 1280.50 | 1290.30 | 1295.10 |
ACO | 1290.80 | 1300.50 | 1308.10 | 1310.00 |
HMGA | 1400.60 | 1420.05 | 1450.10 | 1460.00 |
Algorithm | m Traffic State | |||
---|---|---|---|---|
0.1 | 0.25 | 0.5 | 0.75 | |
OCO | 13,273.60 | 1280.50 | 1290.30 | 1295.10 |
ACO | 1290.80 | 1300.50 | 1308.10 | 1310.00 |
HMGA | 1330.10 | 1450.20 | 1470.00 | 1500.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Jelloun, R.; Jebari, K.; El Moujahid, A. Open Competency Optimization: A Human-Inspired Optimizer for the Dynamic Vehicle-Routing Problem. Algorithms 2024, 17, 449. https://doi.org/10.3390/a17100449
Ben Jelloun R, Jebari K, El Moujahid A. Open Competency Optimization: A Human-Inspired Optimizer for the Dynamic Vehicle-Routing Problem. Algorithms. 2024; 17(10):449. https://doi.org/10.3390/a17100449
Chicago/Turabian StyleBen Jelloun, Rim, Khalid Jebari, and Abdelaziz El Moujahid. 2024. "Open Competency Optimization: A Human-Inspired Optimizer for the Dynamic Vehicle-Routing Problem" Algorithms 17, no. 10: 449. https://doi.org/10.3390/a17100449
APA StyleBen Jelloun, R., Jebari, K., & El Moujahid, A. (2024). Open Competency Optimization: A Human-Inspired Optimizer for the Dynamic Vehicle-Routing Problem. Algorithms, 17(10), 449. https://doi.org/10.3390/a17100449