From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation
Abstract
:1. Introduction
2. Related Works
3. Data and Methods
3.1. Automated Georeferencing and Pixel Coordinate Conversion
3.2. Vehicle Detection and Tracking
Version | Year of Release | Strengths and New Features |
---|---|---|
YOLOv1 | 2015 |
|
YOLOv2 | 2016 |
|
YOLOv3 | 2018 |
|
YOLOv4 | 2020 |
|
YOLOv5 | 2020 |
|
YOLOv6 | 2022 |
|
YOLOv7 | 2022 |
|
YOLOv8 | 2023 |
|
YOLOv9 | 2024 |
|
YOLOv10 | 2024 |
|
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Tewes, A. Investigating the Potential of UAV-Based Low-Cost Camera Imagery for Measuring Biophysical Variables in Maize. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2018. [Google Scholar]
- Karbowski, J. Using a drone to detect plant disease pathogens. Int. Multidiscip. Sci. Geoconf. SGEM 2022, 22, 455–462. [Google Scholar]
- Bogue, R. Beyond imaging: Drones for physical applications. Ind. Robot. Int. J. Robot. Res. Appl. 2023, 50, 557–561. [Google Scholar] [CrossRef]
- Anil Kumar Reddy, C.; Venkatesh, B. Unmanned Aerial Vehicle for Land Mine Detection and Illegal Migration Surveillance Support in Military Applications. In Drone Technology: Future Trends and Practical Applications; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 325–349. [Google Scholar] [CrossRef]
- Garg, P. Characterisation of Fixed-Wing Versus Multirotors UAVs/Drones. J. Geomat. 2022, 16, 152–159. [Google Scholar] [CrossRef]
- Sönmez, M.; Pelin, C.-E.; Georgescu, M.; Pelin, G.; Stelescu, M.D.; Nituica, M.; Stoian, G.; Alexandrescu, L.; Gurau, D. Unmanned aerial vehicles—Classification, types of composite materials used in their structure and applications. In Proceedings of the 9th International Conference on Advanced Materials and Systems, Bucharest, Romania, 26–28 October 2022. [Google Scholar]
- Heiets, I.; Kuo, Y.-W.; La, J.; Yeun, R.C.K.; Verhagen, W. Future Trends in UAV Applications in the Australian Market. Aerospace 2023, 10, 555. [Google Scholar] [CrossRef]
- Elloumi, M.; Dhaou, R.; Escrig, B.; Idoudi, H.; Saidane, L.A. Monitoring road traffic with a UAV-based system. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Butilă, E.V.; Boboc, R.G. Urban traffic monitoring and analysis using unmanned aerial vehicles (UAVs): A systematic literature review. Remote Sens. 2022, 14, 620. [Google Scholar] [CrossRef]
- Nonami, K. Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV. J. Syst. Des. Dyn. 2007, 1, 120–128. [Google Scholar]
- Zhou, S.; Xu, H.; Zhang, G.; Ma, T.; Yang, Y. Leveraging Deep Convolutional Neural Networks Pre-Trained on Autonomous Driving Data for Vehicle Detection from Roadside LiDAR Data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22367–22377. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Zhang, K.; Ni, Y.; Bajgain, S. Improved deep hybrid networks for urban traffic flow prediction using trajectory data. IEEE Access 2018, 6, 31820–31827. [Google Scholar] [CrossRef]
- Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 2020, 12, 1–308. [Google Scholar] [CrossRef]
- Tran, D.N.-N.; Pham, L.H.; Nguyen, H.-H.; Jeon, J.W. A Vision-Based method for real-time traffic flow estimation on edge devices. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8038–8052. [Google Scholar] [CrossRef]
- McCraith, R.; Neumann, L.; Vedaldi, A. Real Time Monocular Vehicle Velocity Estimation using Synthetic Data. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 1406–1412. [Google Scholar]
- Kang, H.; Lee, J. A Vision-based Forward Driving Vehicle Velocity Estimation Algorithm for Autonomous Vehicles. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft, The Netherlands, 12–16 July 2021; pp. 492–497. [Google Scholar]
- Timofejevs, J.; Potapovs, A.; Gorobetz, M. Algorithms for Computer Vision Based Vehicle Speed Estimation Sensor. In Proceedings of the 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 10–12 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Hernández Martínez, A.; Fernandez Llorca, D.; García Daza, I. Towards view-invariant vehicle speed detection from driving simulator images. arXiv 2022, arXiv:2206.00343. [Google Scholar]
- Peruničić, A.; Djukanović, S.; Cvijetić, A. Vision-based Vehicle Speed Estimation Using the YOLO Detector and RNN. In Proceedings of the 2023 27th International Conference on Information Technology (IT), Zabljak, Montenegro, 15–18 February 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, D.; Er, M.J.; Zhuang, Y.; Hu, H. A novel vehicle tracking and speed estimation with varying UAV altitude and video resolution. Int. J. Remote Sens. 2021, 42, 4441–4466. [Google Scholar] [CrossRef]
- Lowe, G. Sift-the scale invariant feature transform. Int. J. 2004, 2, 2. [Google Scholar]
- Karami, E.; Prasad, S.; Shehata, M. Image matching using SIFT, SURF, BRIEF and ORB: Performance comparison for distorted images. arXiv 2017, arXiv:1710.02726. [Google Scholar]
- Kaplan, A.; Avraham, T.; Lindenbaum, M. Interpreting the ratio criterion for matching SIFT descriptors. In Lecture Notes in Computer Science, Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part V; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Long, T.; Jiao, W.; He, G.; Zhang, Z. A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sens. 2016, 8, 56. [Google Scholar] [CrossRef]
- Boudjit, K.; Ramzan, N. Human detection based on deep learning YOLO-v2 for real-time UAV applications. J. Exp. Theor. Artif. Intell. 2022, 34, 527–544. [Google Scholar] [CrossRef]
- Sundaresan Geetha, A.; Alif, M.A.R.; Hussain, M.; Allen, P. Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy. Vehicles 2024, 6, 1364–1382. [Google Scholar] [CrossRef]
- Kalake, L.; Wan, W.; Hou, L. Analysis Based on Recent Deep Learning Approaches Applied in Real-Time Multi-Object Tracking: A Review. IEEE Access 2021, 9, 32650–32671. [Google Scholar] [CrossRef]
- Yang, Y.; Pi, D.; Wang, L.; Bao, M.; Ge, J.; Yuan, T.; Yu, H.; Zhou, Q. Based on improved YOLOv8 and Bot SORT surveillance video traffic statistics. J. Supercomput. 2024. [Google Scholar] [CrossRef]
- Hussain, M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Alif, M.A.R.; Hussain, M. YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain. arXiv 2024, arXiv:2406.10139. [Google Scholar]
Drone Type | Advantages | Disadvantages | Uses |
---|---|---|---|
Multirotor UAVs |
|
|
|
Fixed-Wing UAVs |
|
|
|
Single-Rotor UAVs |
|
|
|
Fixed-Wing Hybrid UAVs |
|
|
|
# | Speed Gun (km/h) | Proposed Method (km/h) | Absolute Error | UAV Altitude (m) | UAV Speed (m/s) |
---|---|---|---|---|---|
1 | 26 | 25.47 | 0.53 | 65 | - |
2 | 26 | 25.18 | 0.82 | 65 | 5 |
3 | 30 | 29.44 | 0.55 | 65 | 5 |
4 | 34 | 33.33 | 0.67 | 65 | 5 |
5 | 35 | 37.5 | 2.5 | 50 | 10 |
Track | Setting | UAV Speed (m/s) | Track Length (m) | Track Length (m) (Inside Buffer) * |
---|---|---|---|---|
02 | Stationary | - | 52 | 52 |
09 | Nonstationary | 05 | 93 | 76 |
13 | Nonstationary | 10 | 128 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.W.; Adnan, M.; Ahmed, M.; Janssens, D.; Wets, G.; Ahmed, A.; Ectors, W. From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation. Algorithms 2024, 17, 558. https://doi.org/10.3390/a17120558
Ahmed MW, Adnan M, Ahmed M, Janssens D, Wets G, Ahmed A, Ectors W. From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation. Algorithms. 2024; 17(12):558. https://doi.org/10.3390/a17120558
Chicago/Turabian StyleAhmed, Muhammad Waqas, Muhammad Adnan, Muhammad Ahmed, Davy Janssens, Geert Wets, Afzal Ahmed, and Wim Ectors. 2024. "From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation" Algorithms 17, no. 12: 558. https://doi.org/10.3390/a17120558
APA StyleAhmed, M. W., Adnan, M., Ahmed, M., Janssens, D., Wets, G., Ahmed, A., & Ectors, W. (2024). From Stationary to Nonstationary UAVs: Deep-Learning-Based Method for Vehicle Speed Estimation. Algorithms, 17(12), 558. https://doi.org/10.3390/a17120558